Computers, Urban Studies, and Urban Management

Jean-Claude Thill

Geography and Public Policy Univ. of North Carolina at Charlotte United States

Computers in Urban Planning and Management

The beginnings

- Computing devices used in public planning for 100 years
 - Transportation planning
 - Population and housing census
- Mainframe computers
- Hardware, software, and models were a bottleneck
 - Slow, not interactive (batch sessions)
 - Few variables
 - Coarse representation of the city region
 - "Fitting the reality to the model"

Computers in Urban Planning and Management

- ✤ The sequel
 - Data collection and data management
 - Data analysis and models
 - Communication and data visualization
 - From operational models (that grew out of theory or physical science models) to <u>Planning</u> <u>Support Systems</u> (Britton Harris)

The Planning Process as a sequence of computable methods enabling decision support (Batty & Densham, 1996)

Planning Support Systems (PSS)

- Many planning problems are semi-structured
- Planning problems are inter-related
 - Partial or holistic view
 - Modular structure
 - Common "language", with shared data, shared vision, interoperable modeling tools
 - Collaborative environment to solve multifaceted problems (group DSS)

DECISION SUPPORT SYSTEM MODEL COMPONENT Model base USER INTERFACE Model base Management system Graphics system Decision Report Maker Generator DATA COMPONENT Analyst Dialogue System Datat ase Management System Database

Sustainability

- •Environmental
- •Social
- •Economic

(Lolonis, 1990)

- Geographic Information Systems (GIS)
 - Computer-based information systems
 - Data is organized/referenced by their location
 - Started from need in Land Information Systems
 - Enterprise GIS: framework for integrated workflow

- Geographic Information Systems (GIS)
 - Data integration

- Cadastral systems
 - Parcels are a critical part of a modern GIS

- Cadastral systems
 - Parcels are linked to many operations of government

Cadastral systems

Potential Benefits to Local Government

Assures that the best available data are used in each public transaction Avoids conflicts among land records of different public offices Improves accuracy of real-property assessments Provides base maps for local planning and preliminary engineering studies Provides a standardized data base for neighborhood, municipal, county. or regional development plans Avoids costs of maintaining separate map systems and land – data files Encourages coordination among separate map systems and land –data files Improves public attitudes toward administration of local government programs

Potential Benefits to provincial & national governments

Provides accurate inventories of natural assets

Provides accurate locational references for administration of state regulations such as pollution controls

Accurately locate state ownership s of other interest in land

Provides a standardize data base for management of public lands

Provides large-scale base maps for siting studies

Simplifies coordination among province and local offices

Provides a data base for monitoring objects of national concern e.g. agricultural land use and foreign ownership of real estate

Provides standardized records for managing provincial/national assistance to local programs such as housing, community development and historic preservation

Potential Benefits to private firms and individuals

Property Ownership Land Records Information System (POLARIS), Charlotte, North Carolina

Charlotte-Mecklenburg Co – Property Records

POLARIS – Great Search

Economic Development

Official Charlotte Chamber of Commerce and Mecklenburg County Government Web Site By using this site, you acknowledge and agree to <u>our disclaimer</u> . For more information, please email <u>gis@charlottechamber.com</u>.

Data Analysis & Modeling

✤ Urban computing

- Emerging concept where every sensor, device, person, vehicle, building, and street in the urban areas can be used as a component to sense city dynamics to enable city-wide computing to tackle the challenges of urban areas (urban planning) so as to serve people and cities
- Using crowd-sourcing, volunteered geographic information to better under use and function of cities

Urban

Computing

Mining

Improving

Questions

- What's wrong with the city configuration?
- Does a carried out urban plan really work?

Data Analysis & Modeling

- Urban Computing
 - Taxi trajectories in Beijing (67,000)
 - Detection of traffic anomalies, functional regions, travel itinerary suggestions

Data Analysis & Modeling

- Urban Computing
 - Bus Smart Card, Beijing
 - Commuter trips, updating travel behavior surveys

市政 交通

0

Data Analysis & Visualization

- Models of Urban Dynamics
 - Evolution of Urban Models

Land use & Transportation

✤How is ABM/CLUES different...

- Than Spatial I/O and Spatial Interaction Models
 - E.g. TRANUS, MEPLAN, DRAM/EMPAL
 - Dynamic, not cross-sectional equilibrium
 - Microsimulates agents and spaces, not aggregate
- Than Cellular Automata Models
 - Land Cover or Land Use Change Models
 - Agents and behaviors not based on cell transitions
 - Clearer accounting of agents, real estate, location
- Better for policy assessment and analysis

How C.L.U.E.S. Works

- Process-based approach
- Behavioral simulations of individual agents
- Parcel level allows for fine-grained analyses
- Integrates transportation and land use
- Models market interactions
- Dynamically simulates annual time steps
- Portable and open-source
- Customized version of UrbanSim

How C.L.U.E.S. Works

- Process-based approach
- Behavioral simulations of individual agents
- Parcel level allows for fine-grained analyses
- Integrates transportation and land use
- Models market interactions
- Dynamically simulates annual time steps
- Portable and open-source
- Customized version of UrbanSim

C.L.U.E.S. Inputs

Raw Data	Data Source	Derived Input Data
Parcel & Tax Data (2001-2009)	Mapping and Project Services in Mecklenburg County	Parcels & Buildings Development templates
PUMS (2008) STF3 (2000)	Census Bureau	Households Persons
Jobs & Businesses (2006, 2008, 2010)	Employment Security Commission ReferenceUSA Charlotte-Mecklenburg Planning Dept.	Jobs at place of work by NAICS code
Zoning ordinances	Charlotte-Mecklenburg Planning Dept. Planning Dept. of all the towns	Development constraints
Protected land	North Carolina Gap Analysis Project	Development constraints
FEMA	Mecklenburg County	Development constraints
Preliminary plans	Mecklenburg County	Development templates
Transport network	Metrolina/CDOT	Travel data

Inputs

Businesses in Parcels, Mecklenburg County, 2008

- C **Construction, Natural resources, Mining**
- Economic **Sectors**
- Manufacturing Transportation, Trade, Utilities
- 0
 - Information **Financial activities**

- \bigcirc **Professional & Business Services**
 - \bigcirc **Education & Health Service**
 - Leisure & Hospitality
 - \circ Other services
 - \circ Government

Land Use Map, Mecklenburg County, 2008

Outputs

Jobs Projections Sample

Policy Evaluation (what is testable?)

Operate transit services

Under Development: Google Earth platform to better communicate with the public on urban form

Data Analysis & Visualization: Facility Location Models

- Rapidly expanding urban areas are dynamic environments
 - Need to expand existing network of public facilities to meet anticipated increase or decrease in demand
 - schools, libraries, emergency services
- Closing existing facilities in areas characterized by population decline
- Location models are tools for regional and urban planners and decision makers
 - Each student must be assigned to a school
 - Budget determines number of schools (*p*-median)
 - School deemed essential can be kept in the system
- Public facility location models
 - Minimize total travel distance to the facility *j*
 - p-median Hakimi (1964)

Formulation

Objective Function

min
$$Z = \sum_{i \in I} \sum_{j \in J} a_i d_{ij} X_{ij}$$

Where Z is the total impedance

i is a demand node, *I* is the set of all demand nodes *j* is a school site location, *J* is the collection of all school sites a_i is the demand at location *i* d_{ii} is the impedance between locations *i* and *j*

 X'_{ii} means the allocation between demand *i* and site *j*

Formulation

Subject to (constraints)	$\sum_{i\in J} X_{ij} = 1$	$\forall i \in I$
	$X_{ij} \leq Y_j$	$\forall i \in I, \forall j \in J$
	$\sum_{j\in J}Y_j=p$	
	$C_j^- \leq \sum_{i \in I} a_i X_{ij}$	$\forall j \in J$
	$C_j^+ \ge \sum_{i \in I} a_i X_{ij}$	$\forall j \in J$
	$X_{ij} \in \{0,1\}$	$\forall i \in I$
	$Y_i \in \{0, 1\}$	$\forall j \in J$

p is the total number of schools to open C_j^- is minimum capacity of school site *j* C_j^+ is maximum capacity of school site *j* Y_j^- is the location decision variable

Data Analysis & Visualization: Facility Location Models

iGLASS – a Planning Support System

- Portable
- Interactive
- Scalable open source GIS platform
 - DotSpatial 1.3
 - C#
- The model parameters and input data can be altered on the fly through the GUI (such as addition of school locations and modification of their capacities)
- Visualization components pertain to children assignment to school and school utilization
- Highlights demand allocated to a given school
- The model allows for sensitivity analysis on capacity constraints and the fractional allocation of nodal demand to multiple schools
- Complex computational algorithm (Tabu search and genetic algorithm)

Data Analysis & Visualization: Facility Location Models

UNC CHARLOTTE

Conclusions

- Urban studies have made major progress thanks to computers and information technologies, and so have urban planning and urban management
- Recent trends are from model-intensive to data-intensive
- The integration and coupling of data, modeling, and visualization leverage the strength of each component
- Spatial information technologies present great opportunities for spatial urban and regional planning in fast developing countries

Thank you!

Jean-Claude Thill

Jean-Claude.Thill@uncc.edu

iGLASS

Editable attribute tables

🦻 Attribute Table	Editor					x
Edit View	Selection Tools					
i 🖪 🔍 📄 🔸	🗏 🍝 🕏 🦻					
TAZID	stu2010	SchoolID	nearOrder	closestDis	travelTime	re 🔺
10001	78	9	2	3217.014017530	4437.564868733	12
10002	85	10	0	2396.434762300	2396.434762300	0
10003	114	10	0	2921.568854750	2921.568854750	0
10004	0	10	0	2121.970733909	2121.970733909	0
10005	27	9	2	3209.620843288	4469.656469609	12
10006	5	10	0	3082.404979559	3082.404979559	0
10007	0	10	0	3314.508899725	3314.508899725	0
10008	52	9	1	2674.057590811	3969.590467334	12
10009	15	7	1	3501.273866147	4026.121403976	52
10010	66	9	2	3400.773503580	4596.283013481	11
10011	3	10	0	3702.450762144	3702.450762144	0
10012	25	9	2	3614.567578268	4804.097092613	11
10013	0	10	0	3948.933704961	3948.933704961	0
10014	0	10	0	3955.954218009	3955.954218009	0
10015	12	9	1	3569.616554227	4690.680659814	11
10016	5	10	n	3360 685981228	3360 685981228	<u>n</u> –
	III					•

In Memory

1 row selected.

Close

iGLASS

UNC CHARLOTTE

Location-Allocation parameters configuration

Define the number of schools to open Define the type of distance Open-Close constraints on schools Define tabu search parameters

💀 School Constraints		
Number of Periods:	Period 1	•
Increase Capacity by:		
Number of Schools:		
School remains open if it's bu	uilt after: 1950 👻	Apply
Closed School	Schools	Open Schools
< <<=== > ===>>	MARIE G. C A ARDREY KE BUTLER HIC HOPEWELL INDEPENDE MALLARD C MYERS PAF New School New School	BERRY ACADE E.E. WADDELL EAST MECKLEI GARINGER HIG HARDING HIGH OLYMPIC HIGH PROVIDENCE H VANCE HIGH WEST CHARLC
	ОК	Cancel

Laver		Algorithm
Demand L Site Layer	TAZ Demands 👻	 Based on Index Based on Population Based on Priority
C	onstraints on Sites	 Adaptive Priority P-Median Distance
Cost Euc Trav	lidean Distance vel Time	Power (D): Power (P):
P-Value:	20	Percentage: 100
Neighbor: TabuLen:	20	Max Distance:
		OK CANCEL

36