LA QUESTION DE L’EAU AU MAROC SELON L’APPROCHE "NEXUS" DANS LE CONTEXTE DU CHANGEMENT CLIMATIQUE

30 MARS 2020
Coordinateur de l’étude

Dr. Mohamed SINAN

Equipe d’Experts

- Dr. Mohamed SINAN : Ressources en eau
- Dr. Abdelali DAKKINA : Energie
- Dr. Said OUATTAR : Agriculture et Irrigation
- Dr. Omar MHIRIT : Ecosystèmes naturels

Propriété de l’IRES, ce rapport, par les opinions qui y sont exprimées, engage la responsabilité de ses auteurs et en aucun cas celle de l’IRES.
Table des matières

Introduction ... 9

Partie 1 : Méthodologie et benchmark .. 13

1. Méthodologie globale de l’étude .. 14
 1.1 Contexte général de l’étude .. 15
 1.2 Approche méthodologique .. 17

2. Benchmark international du "NEXUS" : Identification des clés de succès des meilleures pratiques "NEXUS" internationales .. 18
 2.1 Bref historique du "NEXUS" ... 18
 2.2 Concept et bénéfices du "NEXUS" ... 20
 2.3 Expériences internationales de l’approche "NEXUS" .. 21
... 41

Partie 2 : Etat actuel et futur et cartographie des ressources naturelles des secteurs du "NEXUS" ... 41

1. Etat actuel et tendances des ressources naturelles des secteurs du "NEXUS" .. 42
 1.1 L’Eau : une ressource vitale en continuelle raréfaction et vulnérable à la pollution 43
 1.2 L’énergie : un secteur dominé par les énergies fossiles ... 55
 1.2.1 Le paysage énergétique marocain ... 55
 1.3 L’agriculture irriguée : moteur du monde rural ... 64
 1.4 Les écosystèmes naturels: des espaces diversifiés et vulnérables à la sécheresse 74

2. Les secteurs du "NEXUS" face au changement climatique ... 83
 2.1 Impact du changement climatique ... 83
 2.2. Les ressources en eau du Maroc et le changement climatique .. 88
 2.3. Le secteur de l’énergie face au changement climatique ... 91
 2.4. L’Agriculture face au changement climatique ... 98
 2.5. Les écosystèmes naturels et le changement climatique ... 100

Partie 3 : Analyse des interactions et cohérences entre les secteurs du "NEXUS " 105

1. Politiques et stratégies sectorielles du NEXUS .. 107
 1.1. Politique et stratégie nationale de l’Eau du Maroc .. 107
 1.2. Le secteur de l’énergie : une volonté affichée sur la voie de l’économie verte et de la transition énergétique ... 116
 1.3. L’Agriculture : économie et valorisation de l’eau d’irrigation .. 122
 1.4. Les écosystèmes naturels : une vision intégrée et territorialisée inscrite dans la durabilité 124

2. Analyse des interactions et des cohérences entre les secteurs du "NEXUS" 132
 2.1. Analyse des interactions du "NEXUS Eau-Energie-Agriculture-Ecosystèmes naturels" 132
 2.2. Analyse des incohérences des secteurs : eau-énergie, agriculture et écosystèmes naturels pour la mise en œuvre du "NEXUS" .. 138
Partie 4 : Orientations stratégiques et feuille de route pour la mise en place au Maroc du “NEXUS” ... 149
1. Orientations stratégiques.. 151
2. Feuille de route des mesures opérationnelles pour l’implémentation des orientations stratégiques.. 158
Références bibliographiques.. 166
Liste des figures

Figure 1 : Le "NEXUS Water Energy Food (WEF)", rencontre des trois sécurités 19
Figure 2: Evolution du nombre de publications sur le "NEXUS WEF" : (1988–2016) 19
Figure 3: Modèles de "NEXUS" .. 20
Figure 4: Cadre "NEXUS" du "PNUE"/"UNEP" ... 20
Figure 5: Cadre conceptuel du "NEXUS" .. 21
Figure 6: Cadre conceptuel du WEF NEXUS dans les pays arabes 23
Figure 7: Actions pour la mise en œuvre du "WEF NEXUS" .. 29
Figure 8: Schéma de coordination des activités du "WEF NEXUS" de la Tunisie 30
Figure 9: Schéma du nouveau mécanisme de coordination des activités du "NEXUS WEF" . 31
Figure 10: Schéma d’intégration du "WEF NEXUS" dans la planification 32
Figure 11: Documents et programmes stratégiques par secteur 33
Figure 12: Cartographie des Programmes/Stratégies de base en Tunisie 33
Figure 13: Maitriser les cinq conditions de réussite du "NEXUS" 38
Figure 14: Carte des précipitations moyennes du Maroc .. 44
Figure 15: Potentiel des ressources en eau superficialles des bassins du Maroc 45
Figure 16: Carte des nappes d’eau souterraines du Maroc .. 46
Figure 17: Potentiel des ressources en eau souterraines des bassins du Maroc 47
Figure 18: Historique des apports en eaux superficialles du Maroc 48
Figure 19: Sites vulnérables aux inondations au Maroc ... 50
Figure 20: Evolutions piézométriques des nappes d’eau souterraines du Maroc 52
Figure 21: Carte de la qualité globale des eaux superficialles du Maroc 53
Figure 22: Qualité globale des eaux souterraines du Maroc, état de 2016–2017 53
Figure 23: Objectifs fondamentaux du paysage énergétique marocain 55
Figure 24: Consommation d’énergie primaire (Année : 2017) 56
Figure 25: Génération d’électricité par source d’énergie (Année : 2017) 56
Figure 26: Capacité électrique installée entre 2009 et 2020 .. 59
Figure 27: Capacité de production (MW) de sources renouvelables à fin 2018 59
Figure 28: Vision 2030 de la transition énergétique ... 61
Figure 29: Les trois défis de l’agriculture irriguée ... 65
Figure 30: Réduction de la surface agricole utile (SAU) disponible par habitant 66
Figure 31: Explosion de la demande en denrées essentielles .. 67
Figure 32: Réduction des apports en eau aux périmètres irrigués sur les dernières décades ... 67
Figure 33: Contribution de l’irrigué à l’économie nationale 68
Figure 34: Piliers et réformes du Plan Maroc Vert ... 70
Figure 35: Evolution de la modernisation de l’irrigation ... 72
Figure 36: Bilan de l’extension des surfaces irriguées .. 73
Figure 37: Projets de Partenariat Public-Privé dans le domaine de l’agriculture 74
Figure 38: Carte forestière du Royaume du Maroc .. 76
Figure 39: Diversité des types de zones humides du point de vue de leur dynamique hydraulique ... 77
Figure 40: Tempérament des espèces climax en fonction des précipitations 80
Figure 41: Cycle de l’eau d’une zone humide .. 82
Figure 42: Projections climatiques du Maroc selon les scénarios 2.6 (favorable) 84
Figure 43: Projection des anomalies des températures et des précipitations annuelles moyennes selon différents scénarios d’émission des gaz à effet de serre 86
Figure 44: Anomalies des températures (°C) et des précipitations (%) au Maroc simulées par l’ensemble des modèles CMIP5 par rapport à la moyenne de la période 1986-2005 ... 87
Figure 45: Résultats des projections des ressources en eau du Maroc aux horizons 2030, 2050 et 2080 ... 90
Figure 46: Évolution des productions céréalières (Millions de Quintaux/an) 98
Figure 47: Projections de changement de rendements moyens (%) pour les scénarios RCP4.5 et RCP8.5 en 2040-2069 par rapport à la période 1971-2000 99
Figure 48: Impact du changement climatique sur la croissance du cèdre au Moyen Atlas ... 104
Figure 49: Évolution du nombre et de la capacité de stockage des grands barrages du Maroc .. 111
Figure 50: Évolution du taux de branchement et de desserte en eau potable en milieux urbain et rural ... 111
Figure 51: Historique de la production hydroélectrique annuelle (GWH) 112
Figure 52: Inventaire des sites inondables dans le Plan National de Protection Contre les Inondations (PNI-2017) ... 113
Figure 53: Fondements et axes stratégiques de la politique énergétique du Maroc... 118
Figure 54: Surface couverte par les plans d’aménagement 126
Figure 55: Carte de l’état actuel du réseau d’aires protégées au Maroc.................. 128
Figure 56: Principales interactions mises en évidence entre les secteurs du "NEXUS Eau-Energie-Agriculture et Ecosystèmes naturels" du Maroc ... 137
Figure 57: Principales incohérences identifiées entre les secteurs du NEXUS : Eau-Energie-Agriculture et Ecosystèmes naturels du Maroc .. 140
Figure 58: Orientations stratégiques des secteurs du "NEXUS Eau-Energie-Agriculture-Ecosystèmes" ... 152
Liste des tableaux

Tableau 1: Potentiel des ressources en eau superficielles des bassins du Maroc..............45
Tableau 2: Ressources en eau souterraines du Maroc...46
Tableau 3: Volumes des eaux usées brutes générées par les centres urbains et projetés à l’horizon 2050 au niveau de chaque bassin hydraulique...54
Tableau 4: Bilan de l’eau d’une année pour les types de forêts de cèdres au Maroc.....81
Tableau 5: Projections du capital eau/habitant/an...90
Tableau 6: Principaux impacts du changement climatique sur les sources de production d’énergie par facteur de stress climatique ..92
Tableau 7: Principaux impacts du changement climatique sur la transmission et la distribution de l’énergie par facteur de stress climatique ...95
Tableau 8: Principaux impacts du changement climatique sur la consommation d’énergie par facteur de stress climatique ..95
Tableau 9: Projections par zone géographique des changements de température et de précipitations pour les principales essences forestières à l’horizon 2100..............100
Tableau 10: Projections des changements dans la tranche pluviométrique de certaines essences forestières ..102
Tableau 11: Impact potentiel de l’augmentation de température sur les limites altitudinales du cèdre au Maroc..102
Tableau 12: Mesures opérationnelles de l’orientation stratégiques : Mettre en place une politique intégrée des secteurs du NEXUS- EEAES ..159
Tableau 14: Mesures opérationnelles de l’orientation stratégique : Renforcement des moyens du développement de la Formation, de la recherche, de la recherche & développement, de l’expertise et de l’innovation dans les secteurs du "NEXUS"163
Tableau 15: Mesures opérationnelles de l’orientation stratégique : Renforcement de la communication et de la sensibilisation sur la vulnérabilité des ressources naturelles au changement climatique et à la surexploitation ..165
Introduction

Tous les écosystèmes naturels sont infiniment connectés et il existe en effet de fortes interdépendances entre ces systèmes et entre leurs ressources naturelles. L'importance et la force de tels liens ont déjà été explorées dans un domaine de recherche connu sous le nom de "lien eau-énergie-nourriture"\(^1\). Ce concept reconnait que l'eau, l'énergie, l'agriculture et d'autres ressources terrestres forment un réseau complexe où l'utilisation et la disponibilité des ressources naturelles dépendent fortement les unes des autres.

Le rapport spécial sur le changement climatique et les terres du Groupe d'Experts Intergouvernemental sur l'Evolution du Climat ("IPCC Special Report, août 2019")\(^2\), aborde également des thèmes étroitement liés, à savoir "la dégradation des sols, la désertification, la sécurité alimentaire, les émissions et la séquestration des Gaz à Effet de serre".

Cependant, la planification et la gestion des ressources en eau, énergétiques et des sols s'effectuent généralement de manière isolée (secteur par secteur). Les déficits en matière de coordination intersectorielle au Maroc constituent un défi majeur, tant au niveau national que régional.

Cette situation pénalisante pour le développement socio-économique du Maroc, appelle une gestion intégrée des ressources naturelles, telles que l'eau, l'énergie, la terre et la biomasse, ainsi qu'une gouvernance intégrée de tous les secteurs concernés. Cette approche renforcera la sécurité de l'approvisionnement en eau, en énergie et en alimentation.

L'approche par lien ou "NEXUS" a "le potentiel d'améliorer le bien-être humain, tout en atténuant les pressions sur l'environnement et les ressources naturelles grâce à une gestion et une gouvernance intégrée". Dans cette approche, la minimisation des compromis est recherchée, afin d'en tirer les avantages indirects, ainsi que les possibilités qu'elle offre pour faire face aux défis socio-économiques et du changement climatique.

L'urgence d'adopter la logique "NEXUS" est née de contraintes alliant "pénurie de l'eau, accroissement de la demande alimentaire, hausse de la consommation d'énergie et dégradation des écosystèmes naturels"\(^3\).

\(^{1}\) www.unwater.org
\(^{2}\) IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food and security
\(^{3}\) FAO, 2014 The State of Food and Agriculture Innovation in family farming, 161 p.
Le principe consiste à développer des synergies entre les secteurs de l’eau, de l’agriculture, de l’énergie et des écosystèmes. C’est une logique d’adaptation qui vise à augmenter la résilience et à réduire la vulnérabilité des milieux naturels, organisations, collectivités et individus face aux effets négatifs observés ou anticipés de l’évolution du climat.

C’est dans le cadre de ces évolutions que l’Institut Royal des Etudes Stratégiques (IRES) a lancé la réalisation de deux études, comme contribution à la réflexion stratégique menée par le Maroc sur le NEXUS “Eau, Energie, Agriculture et Ecosystèmes”.

La première étude, objet du présent rapport, a été réalisée au niveau national et la seconde, en cours de réalisation, au niveau régional centrée sur la région de Souss-Massa. Ces études se font à un moment où le Maroc entame une réflexion élargie et approfondie sur "un nouveau modèle de développement " et ce, suite au Discours Royal à l’occasion de la rentrée parlementaire du 12 octobre 2018.

Le présent rapport est organisé autour de quatre parties. La première partie introduit le contexte général de l’étude, la méthodologie globale adoptée pour la conduire et présente une analyse exhaustive d’un Benchmark international sur le "NEXUS" pour en tirer les meilleurs enseignements pour la mise en place d’un "NEXUS Eau, Energie, Agriculture et Ecosystèmes naturels" au Maroc.

L’approche adoptée est un processus, regroupant, avec des combinaisons complexes, les thématiques de quatre secteurs clés du développement socio-économique : Eau, énergie, agriculture, écosystèmes naturels. Cette complexité exige une approche holistique et interdisciplinaire permettant d’apprêhender pour mieux comprendre la problématique et structurer les informations afin de les traduire en grandes orientations stratégiques et les décliner en mesures opérationnelles sous la forme d’une feuille de route.

La seconde partie présente une analyse descriptive de l’état actuel et futur des ressources naturelles des secteurs du "NEXUS" en mettant en relief leur importance socioéconomique et environnementale, ainsi que les processus, les facteurs et les impacts des modes de leur utilisation. Dans cette partie, l’accent est mis, également, sur le changement climatique en tant que facteur révélateur et/ou amplificateur des tendances du "NEXUS".
L’analyse diagnostique des politiques, des stratégies et des programmes mis en oeuvre par les différents secteurs du "NEXUS" fait l’objet de la troisième partie de ce rapport et a permis de mettre en relief la nature des interactions et des incohérences entre ces secteurs.

Ainsi, dans le cadre d’une approche analytique de liens, afin d’aborder les questions de l’eau, de l’agriculture, de l’énergie et des écosystèmes dans le contexte du changement climatique, chaque secteur est analysé dans ses relations et interactions avec les autres secteurs, séparément. En dépit des progrès réalisés dans ces différents secteurs, d’importants défis demeurent pour la mise en œuvre effective du “NEXUS Eau-énergie-agriculture- écosystèmes naturels (EEAES)".

Forte de ces analyses et investigations, la quatrième partie de ce rapport relève que l’efficacité et l’efficience des actions dans le cadre du "NEXUS", passent par “une logique d’intervention fondée sur des démarches de développement collectives et inclusives qui consacrent la cohérence des politiques sectorielles”⁴. Les quatre orientations stratégiques (OS) suivantes sont recommandées :

OS I : Mettre en place une politique intégrée des secteurs du "NEXUS - EEAES"
OS II : Mettre en place une gouvernance efficiente des secteurs du “NEXUS - EEAES”
OS III : Renforcement des moyens du développement de la formation, de la recherche, de la recherche&développement, de l’expertise et de l’innovation dans les secteurs du "NEXUS-EEAES"
OSIV : Renforcement de la communication et de la sensibilisation sur la vulnérabilité des ressources naturelles au changement climatique et à leur surexploitation

Ces orientations stratégiques sont traduites en mesures opérationnelles sous forme de feuille de route traçant les axes et mettant en évidence les leviers d’actions à même d’apporter des réponses de fond et efficientes dans le cadre d’une approche "NEXUS" des secteurs de l’eau, de l’énergie, de l’agriculture et des écosystèmes naturels.

⁴ CESE 2015 : Convergence des politiques publiques
Partie 1 : Méthodologie et benchmark
1. Méthodologie globale de l’étude

1.1 Contexte général de l’étude

Aujourd'hui, la raréfaction et la dégradation des ressources en eau ainsi que la dégradation des ressources naturelles en général, constituent une contrainte majeure à l’échelle mondiale, sous les effets conjugués du changement climatique, des besoins croissants des pays pour répondre à la pression démographique et aux demandes des secteurs socio-économiques clés : agriculture, industrie, habitat, tourisme. Le Maroc n’échappe guère à cette évolution.

En effet, la croissance marocaine s’accompagne d’une dégradation de l’environnement qui engendre un large éventail de coûts à la société5. De par son climat à dominante aride à semi-aride, caractérisé par des ressources en eau limitées et une très forte variabilité spatio-temporelle des précipitations, le Maroc fait partie des pays subissant "un stress hydrique élevé".

A travers ses différentes composantes, le coût de la dégradation de l’environnement sur la société marocaine est estimé à environ 3,5 % du PIB en 20146. Ce coût serait cependant en baisse, comparé à l’estimation de 3,7 % du PIB effectuée en 2000. Le pays est donc confronté à des contraintes structurelles de gestion durable de ses ressources naturelles.

En effet, durant les deux dernières décennies, en particulier, après la "Conférence des Nations unies pour l’Environnement et le Développement" (CNUED, RIO 1992) et les processus qui l’ont suivi ("conventions environnementales internationales", "Sommet Mondial pour le Développement Durable" ("SMDD; Johannesburg, 2002"), les "Objectifs du millénaire" (OM) puis les "Objectifs du Développement Durable" (ODD)....) , le Maroc se trouve en pleine transition politique, économique et sociale, marquée par une ouverture de plus en plus grande à l’international, à l’origine de l’émergence de nouvelles forces de dynamisme et d’une société civile agissante.

5 Banque mondiale 2018 : Le Maroc à l’horizon 2040
6 Ministère délégué chargé de l’environnement et Banque mondiale 2017 : Coût de dégradation de l'environnement au Maroc
De ce fait, il a réorienté et refondé sa politique sur "la construction de processus de développement durable dans leur triple dimension : écologique, économique et socioculturelle."

Dans ce sens, la volonté politique s’est traduite, par :

- Des choix politico-économiques stratégiques touchant "les domaines de la libéralisation de l’économie, de la régionalisation et la décentralisation, de la déconcentration, de l’éducation et formation et de la lutte contre la pauvreté" ;

Il est important de souligner que la fragmentation des politiques publiques reste problématique au Maroc. Les structures et les mécanismes de coordination intersectoriels efficaces ont fait fréquemment défaut. Cette situation est souvent prisonnière des visions politico-sectorielles, conjuguée à la multiplicité des intervenants, ce qui entraine des différences d’approches dans la conception des solutions et engendre de grands retards et difficultés dans leurs mises en œuvre.

Il est largement admis que les quatre secteurs "Eau, énergie, alimentation et écosystèmes" ne peuvent être traités chacun isolément au niveau des politiques publiques, destinées à garantir leur efficacité, d’où l’impératif d’adopter une approche intégrée afin de gérer l’interdépendance entre eux. Cette approche est communément appelée "NEXUS". L’idée est de considérer que chacun de ces secteurs fait partie "d’un système interconnecté".

L’urgence d’adopter la logique "NEXUS" est née de contraintes alliant pénurie d’eau, accroissement de la demande alimentaire, hausse de la consommation d’énergie et dégradation des écosystèmes naturels.

https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Morocco First/Morocco First NDC.pdf
1.2 Approche méthodologique

L’approche "NEXUS" est un processus, regroupant, avec des combinaisons complexes, les thématiques de quatre secteurs clés du développement socio-économique. Cette complexité exige une "approche holistique intégrée et interdisciplinaire" permettant d’appréhender la problématique et de structurer les informations en vue de les traduire en orientations stratégiques.

Cette combinaison d’experts multidisciplinaires constitue un atout important pour la réalisation d’une analyse croisée approfondie de la situation actuelle des secteurs du "NEXUS", pour l’établissement de recommandations pertinentes et réalisables permettant d’améliorer la convergence des politiques publiques des secteurs du "NEXUS".

Dans ce contexte, l’objectif principal est traduit en objectifs spécifiques, fixés par l’Institut Royal des Etudes Stratégiques au niveau de la note de cadrage de l’étude, qui doivent fournir des informations concernant :

- la cartographie de l’état actuel des ressources naturelles (eau, énergie, terres arables, écosystèmes naturels (forêts et zones humides)) et des pressions auxquelles elles sont soumises, dans le contexte du changement climatique,
- l’analyse des demandes sur ces ressources et leurs tendances passées et futures,
- l’examen des interactions entre l’eau, l’énergie, l’agriculture et les écosystèmes naturels,
- l’analyse des différents objectifs et le degré de cohérence des politiques et stratégies sectorielles en matière d’eau, d’énergie, d’agriculture et d’écosystèmes naturels,
- l’identification des orientations stratégiques et des mesures opérationnelles pour l’élaboration de politiques publiques conformes au “NEXUS”.

En outre, l’étude doit traiter "une dimension culturelle inhérente à l’éducation et ce dès la petite enfance, au sujet de la préservation et de l’utilisation rationnelle et responsable des ressources naturelles".

La démarche adoptée, pour mener cette étude repose sur une analyse approfondie de l’expérience internationale sur le "NEXUS", de la situation actuelle et des défis futurs des secteurs du "NEXUS", des politiques et stratégies sectorielles (documents de planification et des stratégies) et de leurs interactions.
Des recherches bibliographiques poussées ont été menées au niveau international (articles scientifiques, ouvrages, rapports d'études, ...). Elles ont permis, d'une part, d'appréhender et de mieux comprendre la signification, la philosophie et la démarche "NEXUS" et, d'autre part, d'analyser des expériences concrètes des "NEXUS" mises en œuvre par des pays et des organisations internationales.

Une importante recherche documentaire et de données a, également, été effectuée auprès des institutions relevant des départements ministériels concernés par le "NEXUS", notamment ceux de l’eau, de l’énergie, de l’agriculture, de l’environnement et des forêts et des zones humides.

2. Benchmark international du "NEXUS" : Identification des clés de succès des meilleures pratiques "NEXUS" internationales

2.1 Bref historique du "NEXUS"

Le "NEXUS Eau-Energie-Alimentation (EEA)" est un concept récent développé par des chercheurs au niveau des universités et des centres de recherche depuis la fin des années 80. Le "NEXUS EEA" est la convergence des sécurités hydrique, énergétique et alimentaire. Cette convergence est illustrée dans la figure 1 ci-dessous.

Le concept a été mis en avant et lancé réellement à la conférence 2011 de Bon "NEXUS : Le lien énergie-eau-sécurité alimentaire - Des solutions pour l’économie verte" afin de contribuer à la Conférence des Nations unies sur le Développement Durable (Rio+20).

Cette conférence a démontré, pour la première fois, que "l’utilisation de la méthode "NEXUS", fondée sur l’analyse des interactions eau-énergie-alimentation, peut améliorer la sécurité hydrique, énergétique et alimentaire par la création des synergies et par une meilleure gouvernance dans la gestion des trois secteurs".
Depuis 2011, la communauté internationale a investi des efforts importants pour développer les outils et les approches pratiques pour la mise en place du "NEXUS". Ceci est démontré par une augmentation exponentielle des publications à l’échelle internationale qui traitent cette thématique (Figure 2).

Ces recherches ont démontré que l’approche "NEXUS" constitue un cadre novateur pour une vision nouvelle des politiques.
2.2 Concept et bénéfices du "NEXUS"

Depuis 2011, les approches "NEXUS" ont rapidement évolué : les premières applications étaient binaires : "eau-énergie ", "eau-alimentation", "énergie-alimentation". Par la suite, le concept a été élargi pour intégrer trois secteurs, puis 4 secteurs, puis 5… (Figure 3). Le concept a été élargi ultérieurement pour intégrer les écosystèmes naturels, ainsi que les impacts du changement climatique.

"Le modèle le plus complet est celui du Programme des Nations unies pour l’Environnement (PNUE). Il est inclusif et permet de gérer les ressources en favorisant une croissance verte et un développement durable " (Figure 4).

Le concept présenté ci-dessous (GIZ, 2016) est une approche plus intégrée, où l'écosystème est situé au centre du système. Ce cadre conceptuel intègre les trois composantes essentielles suivantes (Figure 5) : les réalités liées à l'économie, à la société et à l'environnement (Action Fields), les forces motrices externes (croissance démographique, urbanisation et changement climatique) et les facteurs favorisants (gouvernance, finance, innovations...).

Figure 5: Cadre conceptuel du "NEXUS"

2.3 Expériences internationales de l’approche "NEXUS"

Cette section comporte trois parties et présente une large gamme d’expériences "NEXUS" menées au niveau mondial. Ces expériences, notamment celles des pays dont les conditions sont proches ou similaires au Maroc, constituent des repères pour développer un "NEXUS" pertinent et propre au Maroc.
Partie 1 : Expérience NEXUS du Moyen Orient et de l’Afrique du Nord

Les pays arabes ont été parmi les premiers à rejoindre les initiatives mondiales pour le développement et la promotion du "NEXUS". La "Ligue Arabe" a adopté ce programme dans le cadre du projet "Programme de Dialogue NEXUS dans la Région MENA" ("NEXUS Regional Dialogue (NRD) in the Middle East and North Africa, 2016") financé par l'Union européenne et le Ministère Fédéral Allemand de la Coopération Économique et du Développement (BMZ) et réalisé avec l’assistance technique de l’Agence Allemande de Coopération Internationale pour le Développement (GIZ).

Le Dialogue régional "MENA NEXUS " vise à susciter un "débat sur l’eau, l’énergie et la sécurité alimentaire et à développer des mécanismes nationaux pour l’intégration du NEXUS EEA-WEF 10 dans les politiques nationales des pays MENA".

Ces expériences sont analysées en vue de dégager les leçons essentielles et de synthétiser les enseignements les plus importants devant permettre de réussir le développement des approches "NEXUS" au Maroc.

✅ Contexte dans la région du Moyen Orient et Afrique du Nord

La région du Moyen-Orient et de l’Afrique du Nord (MENA) connaît des déficits hydriques importants ; Selon la FAO, "la région ne représente que 1,4% des ressources mondiales en eau douce", importe l’essentiel de sa nourriture ; "la région est le plus grand importateur de blé au monde" et reste hautement vulnérable aux effets du changement climatique.

Selon l'agence internationale de l’énergie, la région MENA dispose de "43% des réserves mondiales de pétrole ", consomme beaucoup d’énergie alors que plus de 35 millions de ses habitants manquent d’électricité. Cette région possède un potentiel important en énergies renouvelables, mais peu valorisé. A ces conditions, s’ajoutent une gestion peu durable des ressources naturelles, ainsi que des contextes politiques instables.

Les ressources en eau, en énergie et en nourriture de la région MENA sont étroitement interdépendantes, une situation qui risque d’être aggravée par de nombreuses forces internes et externes, notamment le changement climatique, la démographie et les conflits sociaux.

✓ Cadre conceptuel NEXUS dans la région MENA

Le programme de dialogue NEXUS dans la région MENA "NEXUS Regional Dialogue (NRD) in the Middle East and North Africa" a permis de mettre en relief le cadre conceptuel global. Ce cadre permet d’avoir "une vision holistique des composantes du NEXUS, indique les interactions potentielles, montre les facteurs externes déterminants et rappelle la complexité de l’approche WEF NEXUS" (Figure 6) ("www.water-energy-food.org" ; "www.NEXUS-dialogue-programme.eu").

Figure 6: Cadre conceptuel du WEF NEXUS dans les pays arabes

![Diagramme du cadre conceptuel du WEF NEXUS dans les pays arabes](source: www.water-energy-food.org ; www.NEXUS-dialogue-programme.eu)
✓ Acquis des expériences de la région MENA

Le programme de dialogue NEXUS dans la région MENA, à travers une série d’activités, a permis de réaliser des progrès importants au niveau du développement du "NEXUS" dans les pays de la région. Une plateforme a ainsi été constituée en vue de renforcer les capacités humaines et de catalyser des initiatives de dialogue et de partenariat. L’objet étant de faire converger les partenaires vers des solutions et des politiques inclusives de l’approche "Nexus Eau-Energie-Alimentation". Les principaux acquis sont résumés ci-dessous :

- **La production de six notes de synthèse portant sur la politique "NEXUS" MENA.** Ces notes ont été discutées et approuvées lors d’un atelier de haut niveau auquel ont participé les représentants des gouvernements et des organisations régionales. Ces notes de synthèse analysent de manière approfondie les défis, les compromis et les opportunités découlant du processus décisionnel "WEF NEXUS ". Les propositions ont été adoptées lors de l’atelier de validation de haut niveau avec des membres de la Ligue des Etats Arabes au Caire, en Egypte, durant le mois de mars 2016. La série "WEF NEXUS" dans la région arabe est publiée par la Ligue des États arabes (LAS), avec le soutien technique de la coopération Allemande (GIZ). La série comprend 6 notes d'orientation qui traitent de différents domaines pour la mise en œuvre du "NEXUS" du WEF dans la région MENA ("https://www.water-energy-food.org/regions/mena/1/"").

- **La réalisation d’expériences pilotes et d’évaluations.** Afin d’aider les parties prenantes régionales à élaborer des politiques et des plans d’action concrets pour les futurs investissements multisectoriels de "NEXUS" et ce, en renforçant leurs capacités, le programme a réalisé deux évaluations "NEXUS" pour la Tunisie et le Soudan. En outre, il a lancé deux projets de démonstration "NEXUS" à petite échelle, le premier portant sur l’évaluation de l’agriculture solaire en Jordanie et le deuxième porte sur les impacts du pompage solaire en Tunisie sur la sécurité hydrique.

11 https://www.water-energy-food.org/regions/mena/.
• Le développement et l’échange d’informations. En plus des documents publiés en anglais, il y a lieu de citer la publication de documents spécifiques à la région MENA en arabe sur la plate-forme de ressources "NEXUS": [https://www.water-energy-food.org/regions/mena/]..

✓ L’approche "NEXUS" dans la région MENA

Le "NEXUS Eau-Energie-Alimentation" est une nouvelle approche intégrée qui tente de réconcilier les intérêts sociaux et économiques qui partagent des ressources rares, d’identifier les solutions de compromis et de créer des synergies intersectorielles. Ceci, tout en protégeant la durabilité des écosystèmes et en sécurisant les services qu’ils fournissent, via des approches holistiques cohérentes et intégrées. Parmi les objectifs et les acquis du programme "NEXUS" dans la région MENA, il est cité :

• le renforcement de la volonté de la région MENA à réaliser les objectifs de développement durable et les mandats énoncés dans l’accord de Paris de 2015 sur le changement climatique,

• la contribution au développement d’une réflexion systémique et d’un apprentissage organisationnel entre les secteurs et un renforcement des capacités,

• la sensibilisation à la nécessité d’améliorer l’utilisation durable des ressources naturelles limitées et de réduire les risques pour la satisfaction des besoins humains essentiels en eau, en nourriture et en énergie,

• la sensibilisation et la mobilisation des décideurs. La participation des décideurs a contribué à faire évoluer les mentalités au niveau des secteurs, des responsables politiques et des dirigeants à l’égard de la pensée "NEXUS", en tant que condition préalable essentielle à la gestion optimale et durable des ressources naturelles.

Certaines mesures visant à intégrer l’approche "WEF NEXUS" dans la région MENA ont été recommandées par divers ateliers. Elles concernent :

• la consolidation des capacités institutionnelles du "NEXUS WEF" aux niveaux technique et politique. "Le développement des capacités" devrait être axé sur la gouvernance, la gestion et l’analyse des données, les outils d’aide à la décision, les compétences en résolution des conflits et la communication,

• le renforcement de la cohérence des politiques en les intégrant, en évitant les "silos" et en mettant en synergie les organisations sectorielles et les ministères,

• l’application des méthodologies holistiques "NEXUS et des outils d’aide à la décision pour réussir "une gestion intégrée des ressources en eau, de l’énergie et de l’alimentation,".
• la détermination des approches adaptées aux problématiques, aux conditions spécifiques aussi bien au niveau local, régional que national,

• l’encouragement de la Recherche & Développement appliquée et collaborative sur le NEXUS afin de “promouvoir l’innovation et le transfert de technologie “.

Globalement, la région MENA est riche en ressources énergétiques, manque d’eau et de nourriture et constitue l’une des régions les plus vulnérables du monde face aux effets néfastes du changement climatique. Les politiques actuelles pratiquées, caractérisées par des prix bas des ressources naturelles, ont favorisé “des modes de consommation et de production non durables” qui conduisent à l’épuisement accru des ressources.

"Les subventions non ciblées ont également entraîné une surconsommation des ressources naturelles et l’absence d’incitations pour une utilisation efficiente de ces ressources limitées. L’adoption de l’approche “NEXUS EEA-WEF” apportera de grands avantages à la région arabe dans la poursuite des Objectifs de Développement Durable et dans l’application des accords sur la lutte contre le changement climatique de la COP21 de Paris12.

• Partie 2 : L’expérience "NEXUS“ de la Tunisie

✓ Contexte tunisien

A l’instar du Maroc, la Tunisie fait face à un climat méditerranéen (humide au Nord, semi-aride au centre et aride au Sud) extrêmement variable et une pression croissante sur les ressources en eau, avec des effets néfastes du changement climatique.

“L’utilisation rationnelle des ressources naturelles est faible dans tous les secteurs et ce malgré la mise en opération de multiples structures institutionnelles. Compte tenu des tendances actuelles de la croissance démographique et de la demande croissante en eau, en énergie et en nourriture, la pression sur les ressources naturelles augmente rapidement. Les défis techniques sont aggravés par une conjoncture économique difficile, des problèmes de gouvernance et une transition démocratique“.

12 https://www.water-energy-food.org/regions/emen/.
"Malgré les progrès enregistrés pendant ces dix dernières années, les défis sociaux et environnementaux à relever restent exacerbés par l’effet de nombreux facteurs, dont notamment :

- une transition démocratique difficile,
- des conditions socio-économiques contraignantes (accroissement des inégalités et taux de pauvreté élevé, estimé à 24% en 2011),
- une croissance démographique continue,
- une économie peu performante (faibles taux de croissance économique : 1,1% en 2015, 1% en 2016 et 1,9% en 2017),
- une gouvernance inefficace (insuffisance d’application des lois),
- une dégradation des ressources naturelles,
- une demande croissante en énergie, en eau et en alimentation,
- une urbanisation croissante."

"Face à cette situation difficile, à la raréfaction des ressources hydriques, énergétiques et alimentaires, ainsi qu’aux nombreux développements politiques, l’approche "WEF NEXUS" propose de concevoir une gestion combinée des risques. Cette approche peut favoriser un développement durable et pourra aider à réduire l’écart entre l’offre et la demande, à travers le renforcement de la coordination institutionnelle et politique et la cohérence entre les secteurs."13

✓ Les Cinq piliers de l’approche "WEF NEXUS" pour la Tunisie

L’approche proposée pour la Tunisie s’inspire de celle développée dans la région du Moyen-Orient et de l’Afrique du Nord. L’adoption de cette approche sera très bénéfique dans le contexte actuel difficile de la Tunisie, car elle permettra de créer des opportunités pour une meilleure gouvernance et une gestion plus efficace des ressources naturelles et des besoins humains associés. Cette approche repose sur les cinq piliers décrits ci-dessous :

Pilier 1 : Maitriser la bonne gouvernance et l’apprentissage organisationnel

Pour atteindre les objectifs stratégiques du "WEF NEXUS" et notamment un développement durable des trois secteurs de l’eau, de l’énergie et de l’alimentation, il est impératif que la Tunisie développe une approche coordonnée qui permettra :

- d’assurer une meilleure planification et une meilleure gestion des ressources,
- de développer l’apprentissage organisationnel, la mise en œuvre des outils politiques, législatifs et économiques pour assurer les sécurités hydrique-énergétique et alimentaire,
- de renforcer la gouvernance des structures institutionnelles et des mécanismes de coordination et de collaboration,
- d’encourager l’innovation technologique, la Recherche & Développement appliquée collaborative et ciblée sur le "WEF NEXUS",
- de renforcer les capacités des décideurs pour promouvoir l’innovation et le transfert de technologie entre les trois secteurs de l’eau, de l’énergie et de l’alimentation.

Pilier 2 : Bien connaître la situation actuelle

Le NEXUS a nécessité de faire au préalable "une bonne évaluation de la situation actuelle". Cette évaluation a porté sur le diagnostic des stratégies, des politiques et des plans nationaux existants en Tunisie. Les stratégies nationales et les plans des secteurs de l’eau, de l’énergie et de l’agriculture ont également été évalués.

De même les plans de développement durable, les plans d’adaptation et d’atténuation des effets des changements climatiques ont été analysés. Cette évaluation a permis d’identifier des lacunes dans la conception, la mise en œuvre, la gouvernance et la coordination des politiques sectorielles. Les incohérences, les possibilités de compromis, les synergies et les opportunités ont également été identifiées.

Les institutions responsables de la mise en œuvre des "Objectifs de Développement Durable (ODD)" et des Contributions Déterminées au niveau National (CDN) sont aussi cernées et précisées.

Par ailleurs, les structures institutionnelles et de gouvernance sectorielles et intersectorielles ainsi que les mécanismes de coordination et de coopération ont été diagnostiqués.
Pilier 3 : Intégration du "WEF NEXUS" dans les mécanismes de coordination

Les six actions structurantes pour la mise en œuvre du "WEF NEXUS" de la Tunisie sont identifiées et présentées dans la figure 7 ci-dessous. Ces actions permettent de renforcer les mécanismes de coordination en faveur du "NEXUS".

Plusieurs mécanismes de coordination entre les secteurs de l’eau, de l’énergie et de l’alimentation existent et reflètent une coordination et une intégration de base. "La coordination et la cohérence des politiques, qui doivent se mettre en place au niveau national est un nouveau défi à atteindre, compte tenu des obstacles, des divergences et des diversités institutionnelles existants".

Il est attendu que les décideurs de tutelle (Ministres) mettent en place des instances provisoires, en attendant que la mise en place du programme national de dialogue "NEXUS" ait suffisamment progressé.

Figure 7: Actions pour la mise en œuvre du "WEF NEXUS"

La première étape de la mise en place du "NEXUS" consiste à développer une coordination de base en utilisant les mécanismes existants entre les secteurs de l’eau, de l’agriculture et de l’énergie. L’approche proposée consiste à porter le message au niveau des politiques en rapprochant les ministères de tutelle respectifs à savoir : le Ministère de l’Agriculture, des Ressources Hydrauliques et de la Pêche (MARHP) et le Ministère de l’Industrie et des PME (MIPME). Lorsque le dialogue sera bien avancé, les ministres de "MARHP" et de "MIPME" prendront les décisions nécessaires permettant d’intégrer le "NEXUS" dans les mécanismes actuels, tel qu’indiqué dans la figure 8 suivante. Tous les ministères et organisations partenaires sont associés à ce dialogue :

- Agence Nationale de la Maitrise de l’Énergie (ANME).
- Agence de Promotion des Investissements dans le secteur Agricole (APIA).
- Ministère des Affaires Locales et de l’Environnement (MALE).
- Ministère de l’Agriculture, des Ressources Hydrauliques et de la Pêche (MARHP).
- Ministère de l’Industrie et des PME (MIPME).

Figure 8: Schéma de coordination des activités du "WEF Nexus" de la Tunisie

www.water-energy-food.org ; www.NEXUS-dialogue-programme.eu
La deuxième étape du NEXUS est de passer à une intégration plus avancée et procéder à la création de nouveaux mécanismes de coordination du "NEXUS". Cette étape est préparée au préalable par un dialogue continu entre les principaux partenaires nationaux engagés dans le NEXUS. Les mécanismes sont illustrés par la figure 9 ci-après.

Figure 9: Schéma du nouveau mécanisme de coordination des activités du "NEXUS WEF"

Intégration du WEF Nexus dans un NOUVEAU mécanisme de coordination

Le mécanisme de coordination autonome et le comité spécial nécessitent du temps et de longues procédures

Etablir un conseil du WEF Nexus au niveau du Premier Ministre

Pourrait être constitué d'experts et de spécialistes pour fournir des recommandations à court et à long terme

Etablir un conseil du WEF Nexus au niveau du MDICI

Pourrait être composé d'officiers de liaison

Etablir un mécanisme de coordination

www.water-energy-food.org ; www.NEXUS-dialogue-programme.eu

Pilier 4 : Intégration du "WEF NEXUS" dans les mécanismes de planification

Les mécanismes de coordination seront les principaux leviers pour faire avancer la mise en place du "NEXUS". Ainsi, le dialogue continu entre les principaux acteurs nationaux permettra de passer du stade de coordination au stade de planification. L’approche méthodologique suivie fait l’objet de la figure 10 ci-après.

Sur la base des études stratégiques sectorielles réalisées et des divers plans directeurs de la Tunisie, une planification intégrée peut être développée en identifiant des actions pouvant renforcer les convergences entre les secteurs concernés. Les documents clés de base sont indiqués dans la figure 11 ci-après.
"La cartographie des visions, des stratégies et des plans d’actions pour chacun des secteurs concernés par le "WEF NEXUS" est une étape essentielle à réaliser". C’est sur cette base multisectorielle qu’une vision inclusive unique "NEXUS" sera développée, comme cela est présenté dans les figures 11 et 12 ci-après.

Figure 10: Schéma d’intégration du "WEF NEXUS" dans la planification

- **Points d’entrée thématiques**
 - Réduire les fuites d’eau dans les infrastructures de distribution d’eau
 - Offrir des incitations en faveur de l’utilisation efficace de l’eau dans l’agriculture
 - Créer un fonds (ou compenser à travers les fonds existants l’innovation)

- **Point d’entrée politique**
 - Promouvoir les énergies renouvelables dans le traitement et la distribution de l’eau
 - Favoriser la recharge des nappes souterraines par des eaux usées de qualité
 - Participation obligatoire de tous les ministres concernés à l’élaboration des politiques sectorielles et intersectorielles en cours et à venir

Source : www.water-energy-food.org; www.NEXUS-dialogue-programme.eu

Figure 11: Documents et programmes stratégiques par secteur

<table>
<thead>
<tr>
<th>Programmes</th>
<th>Organisation de tutelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratégie eau 2050*</td>
<td>MARHP</td>
</tr>
<tr>
<td>Plan de Développement 2016 – 2020</td>
<td>MDICI</td>
</tr>
<tr>
<td>Plan Solaire Tunisien</td>
<td>MINISTRE EN CHARGE DE L’ÉNERGIE</td>
</tr>
<tr>
<td>Stratégie Nationale de Maîtrise de l’Énergie 2030</td>
<td>MINISTRE EN CHARGE DE L’ÉNERGIE</td>
</tr>
<tr>
<td>Stratégie Nationale de Développement Durable 2014-2020</td>
<td>MALE</td>
</tr>
<tr>
<td>Contribution Déterminée au niveau National (NDC)</td>
<td>MALE</td>
</tr>
<tr>
<td>Programme d’Intensification de l’Agriculture Irriguée</td>
<td>MARHP</td>
</tr>
<tr>
<td>Stratégie pour le développement du secteur de l’agriculture biologique*</td>
<td>MARHP</td>
</tr>
</tbody>
</table>

Source : "www.water-energy-food.org ; www.NEXUS-dialogue-programme.eu "

Figure 12: Cartographie des Programmes/Stratégies de base en Tunisie

Pilier 5 : Développer un modèle de renforcement des capacités pour le “NEXUS”

Une fois que le consensus politique pour la mise en place d’un système “WEF NEXUS” est acquis entre les décideurs des secteurs partenaires du “NEXUS”, un groupe intersectoriel multipartite de travail sera créé pour, d’un côté, aider à guider la gestion de ces trois secteurs et, de l’autre côté, développer des programmes spécifiques de renforcement des capacités institutionnelles et individuelles des secteurs.

Le renforcement des capacités facilite le dialogue, renforce la compréhension des liens du “WEF NEXUS” et permet une meilleure intégration des politiques et des pratiques. Le renforcement des capacités pour le développement du “WEF NEXUS” doit développer des savoirs et des savoir-faire dans divers domaines, dont notamment :

- La connaissance des institutions et des politiques.
- La gestion de l’information et des savoirs.
- Les capacités techniques et managériales.
- La maitrise des outils d’aide à la décision.
- Les modèles de communication et de sensibilisation.
- La négociation et la gestion des conflits.

Partie 3 : Expériences "NEXUS" en Europe, Afrique, Asie et Amérique

Plusieurs cas de réussite de “NEXUS” ont été développés à travers le monde. Les exemples diversifiés suivants sont présentés pour illustrer les domaines d’utilisation du “NEXUS et montrer sa pertinence en Europe, en Afrique, en Amérique et en Asie :

En Europe, la République Fédérale d’Allemagne est exemplaire. En effet, dans ce pays, les principes et les pratiques de la gestion et de l’aménagement du territoire et leurs instruments institutionnels et réglementaires constituent un cadre de gouvernance pertinent et plus avancé que dans d’autres pays. La gestion des conflits d’intérêts est au centre de la planification régionale.
Ainsi, la réglementation stipule que la tâche de l’aménagement du territoire est “...de coordonner les différentes exigences spatiales et de régler les conflits qui surviennent au niveau de la planification ... ”. La vision consiste à harmoniser " ...les exigences sociales et économiques avec leurs fonctions écologiques et à contribuer à un système durable, à grande échelle et équilibré, offrant des conditions de vie équivalentes dans toutes les sous-régions... ".

Un certain nombre d’instruments et de procédures est utilisé pour intégrer les préoccupations et les intérêts intersectoriels, évaluer les conflits et les impacts, assurer l’équilibre, les intérêts sociaux, économiques, et environnementaux. Des instruments et procédures, qui ont démontré leur efficacité, ont été réglementés par la loi et permettent de mener des projets cohérents.

Les principes et les pratiques dans l’aménagement du territoire et leurs instruments constituent un cadre de gouvernance efficace et applicable pour l’approche "NEXUS". Ces principes sont comme suit :

- Rendre transparents les intérêts sectoriels.
- Divulguer les intérêts des acteurs à la fois pertinents et discrets.
- Déterminer et évaluer les impacts sectoriels et intersectoriels.
- Rendre l’information accessible à toutes les parties concernées.
- Equilibrer les intérêts et créer un potentiel.
- Veiller au respect des exigences minimales (fondées sur les exigences légales ou avec l’aide d’experts).
- Evaluer les préoccupations en fonction des normes sociales globales.
- Prendre des décisions fiables concernant les mesures et actions nécessaires.

En utilisant ces principes et les tâches de la planification régionale, il est évident qu’il existe une grande ressemblance avec les approches "NEXUS". Il est, également, clair que, dans ce contexte, de nombreuses exigences en matière de gouvernance doivent être transférables.

Plusieurs cas de "NEXUS" en Allemagne constituent des exemples utiles pour le Maroc et la région MENA. Il convient de citer la "Gestion des eaux souterraines dans le Ried de Hesse" , les " Installations de stockage par pompage à Thuringa" et la" Gestion du bassin du Rhin". Ces cas représentent différents domaines de la gestion de "NEXUS" et représentent plusieurs échelles d’étude, du niveau local au niveau européen.
En Amérique du Nord, des approches “NEXUS” ont été développés et appliqués pour résoudre une large gamme de thématiques de développement.

Ces cas sont pertinents et montrent que l’approche "NEXUS" peut aborder des problématiques plus complexes qui dépassent les 3 ressources "Eau-Energie-Alimentation" et solutionner des problématiques régionales, nationales et inter-frontières.

Parmi les cas réalisés, il faut citer "les projets NEXUS" suivants : le "Traité de Columbia" (Etats-Unis d’Amérique et Canada) ; le "NEXUS de l’eau de l’alimentation et de l’énergie" ; la Conservation de l’eau agricole ; les "Zones humides" ; le "Partenariat et les infrastructures, la Conservation de l’énergie" ; "les eaux recyclées et l’infrastructures vertes" ; le "NEXUS et le système de navigation intérieure" ; "la production de la thermoélectricité" ; "l’infrastructure, la politique et la durabilité" ; "la Planification intégrée de l’énergie et de l’eau dans les interconnexions de l’Ouest et du Texas" ; "les déchets municipaux de la centrale géothermique de Geysers Water Recharge" ; "les opportunités "FEM NEXUS" en Californie". Ces expériences sont diversifiées et très intéressantes.

En Afrique, Les NEXUS suivants constituent des exemples intéressants :

- **Bassin du Niger** : Le programme de développement du dialogue régional "NEXUS" dans ce bassin a mis au point des recommandations de la politique "NEXUS" pour optimiser l’utilisation des ressources et renforcer la résilience du bassin du Niger face aux pressions externes telles que le changement climatique et les demandes croissantes des pays riverains (Ferrini, 2018). Il est à rappeler que le bassin du Niger inclut 9 pays (Benin, Burkina Faso, Cameroun, Tchad, cote d’Ivoire, Guinée, Mali, Niger et le Nigeria).

- **Le cas du Kenya et de l’Ouganda** : Le projet de renforcement des capacités, coordonné par l’université de technologie de Vienne, appuie le renforcement des capacités manquantes pour le "NEXUS FEM“ à travers la formation et la recherche ("CapNEX : APPEAR”, 2016).

En Amérique du Sud : Le réseau de connaissances sur le climat et le développement a réalisé une étude portant sur le lien "eau-énergie-alimentation" dans le bassin amazonien et a produit plusieurs outils servant de base à l'amélioration de la prise de décision dans la région ("CDKN", 2017).

En Asie centrale : Le projet conjoint entre l’Azerbaïdjan et la Géorgie

La Commission économique des Nations unies pour l’Europe poursuit ses efforts pour renforcer la sécurité, à long terme, du "NEXUS" et la transition vers une économie verte de ces deux pays. Le projet porte sur la coopération entre deux pays qui se partagent le même bassin hydraulique.

Conclusion et principaux enseignements

Le "WEF NEXUS" est une approche intégrée des secteurs de l’Eau, de l’Energie et de l’Alimentation, il tente de concilier les aspects sociaux, écologiques et les intérêts économiques qui se partagent les mêmes ressources rares, en identifiant des compromis.

Alors que les approches précédentes étaient purement sectorielles, l’approche du "WEF NEXUS" constitue un changement fondamental pour trouver des solutions et des perspectives intersectorielles intégrées. Elle vise l’utilisation durable des ressources naturelles, tout en assurant l’approvisionnement en eau, en nourriture et en énergie du pays.

En outre, l’approche "WEF NEXUS" aide à atteindre les "Objectifs de Développement Durable (ODD)" et à se conformer aux dispositions des accords de la COP21-Paris de 2015 sur le changement climatique"\(^\text{18}\).

\(^{18}\) FAO, 2014 The Water-Energy-Food NEXUS A new approach in support of food security and sustainable agriculture
La gouvernance des processus "NEXUS" est complexe et nécessite une diversité d’instruments et de contrôle centralisé afin de trouver dans tous les cas une solution adaptée à chaque situation. Le défi consiste à tenir compte du fait que "dans de nombreux pays en développement, les faiblesses institutionnelles, la qualité de la gouvernance, le manque de données, la fragilité des mécanismes de suivi et de contrôle sont des contraintes au développement du NEXUS". Les expériences internationales analysées ci-dessus montrent que la mise en place du "NEXUS" nécessite de maitriser les cinq conditions importantes indiquées sur la figure 13 ci-après.

Figure 13: Maitriser les cinq conditions de réussite du "NEXUS"

Source: Figure adaptée de "Water-Energy-Food NEXUS"20.

Aussi, réussir la mise en œuvre de l’approche "NEXUS" au Maroc nécessiterait un changement de paradigme dans l’élaboration des politiques.

19 Idem.
20 Building the Way Forward, International Water Association, WATER & Development congress, October 20, 2015" (www.waterNEXUSolutions.org)
Il s’agira, en premier lieu, de fonder la logique d’intervention sur des "démarches de développement collectives et inclusives qui consacrent la cohérence des politiques sectorielles. Il s’agit de promouvoir une compréhension commune intersectorielle et inter-organisations, renforcer les dialogues. Il est question, également, d’améliorer l’apprentissage organisationnel, l’identification des interconnexions et des interdépendances entre les secteurs du "NEXUS WEF" afin de créer des synergies, de développer des compromis équitables entre les différents secteurs et maximiser les opportunités de collaboration" 21.

C’est dire que l’initiative de l’Institut Royal des Études stratégiques (IRES), de lancer cette étude, est combien pertinente et constitue un signe très important de "veille technologique".

Le Maroc devrait capitaliser sur cette initiative de l’IRES et développer son expertise en se positionnant dans les “instances leaders” pour valoriser cette veille technologique et adapter les acquis internationaux aux réalités nationales.

Partie 2 : Etat actuel et futur et cartographie des ressources naturelles des secteurs du "NEXUS"
1. Etat actuel et tendances des ressources naturelles des secteurs du "NEXUS"

1.1 L’Eau : une ressource vitale en continuelle raréfaction et vulnérable à la pollution

1.1.1 Contexte géographique et climatique du Maroc

"Situé à l’extrême Nord-Ouest du continent africain, le Royaume du Maroc s’étend sur une superficie de 710 850 km², dont une grande partie est située en zone désertique.

Les températures sont en général douces sur les régions côtières avec une moyenne de 14°C et basses à l’intérieur du pays sur les hauts plateaux et en montagne avec des températures souvent en dessous de 0°C, pouvant atteindre -20°C, donnant lieu à des gelées sur les plateaux et des chutes de neige importantes en montagne.

Les étés sont chauds et secs avec des températures moyennes de 24°C sur le littoral et de plus de 35°C, dépassant parfois les 40°C, dans l’intérieur du pays, avec une forte évaporation et sans précipitations significatives à l’exception d’orages d’origine orographique, parfois violents, débordants sur les régions avoisinantes”.

"Le régime pluviométrique au Maroc est caractérisé par une forte variabilité spatiale. Les précipitations moyennes annuelles se répartissent comme suit (Figure 14):

• Supérieures à 800 mm dans la région la plus arrosée du nord ;
• Entre 400 à 600 mm dans la région du Centre ;
• Entre 200 et 400 mm dans la région de l’Oriental et du Souss ;
• Entre 50 et 200 mm dans les zones sud-atlasiques ;
• Moins de 50 mm dans les bassins de Sakia El Hamra et Oued Eddahab.

22 Ministère délégué chargé de l’environnement, 2016, Communication Nationale du Maroc à la Convention Cadre des Nations Unies sur les Changements Climatiques, 2016 (avec la contribution de Mohamed Sinan)
La pluviométrie en année moyenne est évaluée à 140 milliards de m³ avec une grande variabilité interannuelle”

1.1.2 Potentiel des ressources en eau du Maroc

- Eaux superficielles

"Le potentiel des eaux superficielles du Maroc s’élève à environ 18 milliards de m³/an, soit 13% environ seulement des précipitations moyennes du Maroc. Les apports en eau superficielle varient entre quelques millions de m³/an pour les bassins les plus arides (régions Sud-Est et Sud du Maroc) à quelques milliards de m³/an pour les bassins les plus humides (régions nord du Maroc) (Tableau 1 et Fig. 15)“.

Figure 14: Carte des précipitations moyennes du Maroc

Source : Département de l’Eau, 2020

23 Site web du METLE
Tableau 1: Potentiel des ressources en eau superficielles des bassins du Maroc

<table>
<thead>
<tr>
<th>Bassin hydraulique</th>
<th>Superficie (Km²)</th>
<th>Écoulement moyen d'eau de surface (Million de m³/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loukkos</td>
<td>12 805</td>
<td>3 600</td>
</tr>
<tr>
<td>Moulouya</td>
<td>74 145</td>
<td>1 300</td>
</tr>
<tr>
<td>Sebou</td>
<td>40 000</td>
<td>5 600</td>
</tr>
<tr>
<td>Bouregreg et la chaouia</td>
<td>20 470</td>
<td>852</td>
</tr>
<tr>
<td>Oum Er Rbia</td>
<td>48 070</td>
<td>3 300</td>
</tr>
<tr>
<td>Tensift</td>
<td>24 800</td>
<td>1 140</td>
</tr>
<tr>
<td>Souss-Massa-Draa</td>
<td>126 480</td>
<td>1 502</td>
</tr>
<tr>
<td>Guir-Ziz-Rhéris</td>
<td>58 841</td>
<td>656</td>
</tr>
<tr>
<td>Saki El Hamra et Oued Eddahab</td>
<td>305 239</td>
<td>390</td>
</tr>
<tr>
<td>TOTAL</td>
<td>710 850</td>
<td>18 340</td>
</tr>
</tbody>
</table>

Source : Direction de la Recherche et de la Planification de l'Eau (DRPE), 2015

Figure 15: Potentiel des ressources en eau superficielles des bassins du Maroc

- Eaux souterraines

Le potentiel des eaux souterraines est évalué à environ 4 milliards de m³/an, environ 18 % du potentiel global des ressources en eau du pays (Tableau 2 et Figure 16). Ces ressources sont contenues dans 130 formations géologiques aquifères (Figures 16 et 17), réparties sur une superficie totale d’environ 80.000 km², soit plus de 10% du territoire national" 24.

Tableau 2: Ressources en eau souterraines du Maroc

<table>
<thead>
<tr>
<th>Bassin hydraulique</th>
<th>Superficie en Km²</th>
<th>Ressources renouvelables Mm³/an</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loukkos</td>
<td>12 805</td>
<td>180</td>
</tr>
<tr>
<td>Moulouya</td>
<td>74 145</td>
<td>450</td>
</tr>
<tr>
<td>Sebou</td>
<td>40 000</td>
<td>1 125</td>
</tr>
<tr>
<td>Bouregreg et la Chaouia</td>
<td>20 470</td>
<td>76</td>
</tr>
<tr>
<td>Oum Er Rbiïla</td>
<td>48 070</td>
<td>560</td>
</tr>
<tr>
<td>Tensift</td>
<td>24 800</td>
<td>554</td>
</tr>
<tr>
<td>Souss-Massa- Drâa</td>
<td>126 480</td>
<td>666</td>
</tr>
<tr>
<td>Gui- Ziz-Rhiss</td>
<td>58 841</td>
<td>204</td>
</tr>
<tr>
<td>Sakia El Hamra et Oued Eddahab</td>
<td>305 239</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>710 850</td>
<td>3 833</td>
</tr>
</tbody>
</table>

Source : Direction de la Recherche et de la Planification de l’Eau (DRPE), 2015

Figure 16: Carte des nappes d’eau souterraines du Maroc

Source : Département de l’Eau, 2020
1.1.3. Contraintes au développement des ressources en eau du Maroc

Les ressources en eau du Maroc subissent plusieurs contraintes, à la fois naturelles et anthropiques, rappelées ci-dessous :

- **Contraintes naturelles**

Hétérogénéité spatiale et temporelle des ressources en eau

"Les ressources en eau du Maroc sont caractérisées par une mauvaise répartition à la fois spatiale et temporelle. Les bassins du Nord et du Sebou renferment environ 50% du potentiel des ressources en eau superficielles totales du pays, alors que leur superficie ne dépasse guère 7,4 % de la superficie totale du pays.

Ces ressources sont caractérisées, également, par une mauvaise répartition temporelle. Les apports en eau superficielles peuvent varier en effet entre moins de 10 Milliards de m³/an, pendant les années sèches, à plus de 50 Milliards de m³/an, pendant les années les plus pluvieuses (Figure 18). La fréquence des années de sécheresse a augmenté de façon significative depuis 1989, soit depuis trois décennies, engendrant ainsi une baisse très importante des apports en eau superficielles des barrages (Image 1)."\(^{25}\)

\(^{25}\) MEMEE. Projet de Plan National de l’Eau du Maroc, 2015
Figure 18: Historique des apports en eaux superficielles du Maroc

Source : Département de l’Eau, 2020

Image 1: Retenue vide du barrage Ibn Batouta en 1994

Source : Département de l’Eau
✓ Vulnérabilité aux inondations

"Le "Plan National de Lutte Contre les Inondations" a inventorié plus de 400 sites vulnérables aux inondations (Figure 19). Le risque d’inondations augmente avec le changement climatique, qui accentue les phénomènes climatiques extrêmes, dont les fortes pluies et les crues des oueds."26

✓ Erosion des sols et envasement des retenues des barrages

"L’érosion des sols touche (avec des intensités diverses) toutes les régions du territoire national. Sur 23 millions d’hectares en zones montagneuses, 75% sont touchés par l’érosion, dont un tiers de manière très critique. Les conséquences de cette dégradation se traduisent par :

- un envasement des retenues des barrages entraînant une perte de capacité de stockage d’eau de près de 75 Mm³/an. Le volume total cumulé des retenues des barrages envasées, depuis l’indépendance du Maroc, est évalué à près de 2,24 milliards de m³, représentant près de 12,7% de la capacité totale de stockage des barrages (cf. rapport de la cour des comptes, année 2018)

- la dégradation de la qualité de l’eau et l’eutrophisation des eaux des retenues des barrages

- L’augmentation des frais de fonctionnement et de gestion des infrastructures hydrauliques situées à l’aval et des coûts de production d’eau potable."27

✓ Menaces sur les zones sensibles et les systèmes fragiles

"Les zones humides sont fragilisées sous l’effet des phénomènes naturels (désertification et sécheresse) et des facteurs anthropiques (prélèvements d’eau, surexploitation des nappes alimentant les zones humides...). 30% des plans d’eau naturels sont en effet déjà asséchés et le reste des zones humides a une tendance vers un état d’assèchement (Image 2). Les oasis connaissent, également une détérioration, avec une accélération au cours des dernières années"28.

26 MEMEE. Projet de Plan National de l’Eau du Maroc, 2015
27 MEMEE. Projet de Plan National de l’Eau du Maroc, 2015
Figure 19: Sites vulnérables aux inondations au Maroc

Source : Département de l'Eau, 2020

Image 2: Dayat Hachlaf au Moyen Atlas

Source : Agence du Bassin Hydraulique Sebou
• Contraintes anthropiques

✓ Surexploitation des ressources en eau souterraines

"La plupart des nappes d’eau souterraines connait un état de surexploitation avancé. Le déficit global des bilans des nappes du Maroc s’élève à environ 1 Milliard de m³/an.

Cette surexploitation s’est traduite par des baisses continues des niveaux piézométriques des nappes, pouvant dépasser 3 m/an (cas de la nappe profonde de Fès-Meknès) et la baisse de la pression des nappes en charge (Figure 20), la réduction des débits des sources (ou leur tarissement parfois) et la dégradation de la qualité des eaux souterraines de quelques nappes côtières, conséquence de leur invasion par des eaux marines très salées.

✓ Pollution des ressources en eau

La pollution des ressources en eau constitue un des problèmes majeurs du secteur de l’eau au Maroc. En effet, environ 30% des points de mesure montre une eau superficielle de mauvaise à très mauvaise qualité (Figure 21). Ces points d’eau sont situés notamment en aval des rejets d’eaux usées urbains des centres de Tiflet, Fès, Meknès, Marrakech, Sidi Bennour, Benguéirir, M’rirt, Berrechid, Berkane et Taourirt.

La qualité globale des eaux souterraines est bonne à moyenne au niveau de 54% des stations de mesure (nappes de Moyen Atlas, Charf EL Akab, Pré-Rif, Haute Moulouya, Souss, Guir et Guercif). Cette qualité est mauvaise à très mauvaise au niveau de 46% des stations de mesure (Figure 22).

Les principales causes de la dégradation de la qualité naturelle des ressources en eau sont, notamment, d’une part, le retard cumulé dans les domaines de l’assainissement, principalement dans le milieu rural et de l’épuration des eaux usées domestiques et industrielles (Tableau 3) et, d’autre part, le retard dans l’assainissement solide, le développement de l’agriculture intensive (utilisation excessive des engrais chimiques et des pesticides dans les périmètres agricoles), le non-respect du principe de pollueur-payeur des lois sur l’eau 10-95 et 36-15 et l’avancée des eaux marines dans les nappes côtières, engendrant la salinisation des eaux souterraines, conséquence de leur surexploitation et de l’élévation du niveau marin (effet du changement climatique)".

29 MEMEE. Projet de Plan National de l’Eau du Maroc, 2015
30 CESE. La gouvernance par la gestion intégrée des ressources en eau du Maroc : Levier fondamental de développement durable, 2014 (avec la contribution de Mohamed Sinan)
Figure 20: Evolutions piézométriques des nappes d’eau souterraines du Maroc

Nappe profonde du bassin de la plaine de Sais (Fès-Meknès)

Source : Agence du Bassin Hydraulique (ABH) Sebou, 2020

Nappe profonde du bassin du Gharb

Source : ABH Sebou, 2020

Nappe profonde de Souss

Source : Département de l’Eau, 2020
Figure 21: Carte de la qualité globale des eaux superficielles du Maroc

Source: Département de l'Eau, 2019

Figure 22: Qualité globale des eaux souterraines du Maroc, état de 2016-2017

Source: SE/METLE-Département Chargé de l'Eau, 2018
Tableau 3: Volumes des eaux usées brutes générées par les centres urbains et projetés à l’horizon 2050 au niveau de chaque bassin hydraulique

<table>
<thead>
<tr>
<th>Bassin hydraulique</th>
<th>Volume (Mm³/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2017</td>
</tr>
<tr>
<td>Loukkos</td>
<td>85</td>
</tr>
<tr>
<td>Moulouya</td>
<td>47</td>
</tr>
<tr>
<td>Sebou</td>
<td>121</td>
</tr>
<tr>
<td>Bouregreg-Chaouia</td>
<td>239</td>
</tr>
<tr>
<td>Oum Er-Rbia</td>
<td>60</td>
</tr>
<tr>
<td>Tensift</td>
<td>50</td>
</tr>
<tr>
<td>Souss-Massa</td>
<td>41</td>
</tr>
<tr>
<td>Draa-Oued Noun</td>
<td>11</td>
</tr>
<tr>
<td>Guir-Ziz-Rhéris</td>
<td>6</td>
</tr>
<tr>
<td>S.E.H et Oued Eddahab</td>
<td>11</td>
</tr>
<tr>
<td>TOTAL</td>
<td>670</td>
</tr>
</tbody>
</table>

Source : Département de l’Eau, 2019

1.1.4. Analyse de la demande en eau et de son évolution

“La demande en eau globale est évaluée, selon le Département de l’Eau, à 16,28 Milliards de m³/an. Elle est répartie en 1,75 Milliards de m³/an d’Eau Potable, Industrielle et Touristique (AEPIT), soit environ 10,74 % de la demande en eau globale du Maroc, et 14,53 Milliards de m³/an pour l’Agriculture, soit 89,26 % de de la demande en eau globale du Maroc. La demande en eau globale estimée à l’horizon 2050 est de 18,69 Milliards de m³/an. Elle est répartie en 2,6 Milliards de m³/an d’Eau Potable, Industrielle et Touristique (AEPIT), soit environ 13,91 % de la demande en eau globale du Maroc, et 16,09 Milliards de m³/an pour l’Agriculture, soit 89,09 % de de la demande en eau globale du Maroc”\[^{31}\].

1.2 L’énergie : un secteur dominé par les énergies fossiles

1.2.1 Le paysage énergétique marocain

Le paysage énergétique marocain est basé sur quatre objectifs fondamentaux, comme le montre la figure 23 ci-dessous :

Figure 23: Objectifs fondamentaux du paysage énergétique marocain

```
Quatre Objectifs fondamentaux

1. Généralisation de l'accès à l'énergie à des prix compétitifs
2. Sécurité d'approvisionnement et disponibilité de l'énergie
3. Préservation de l'environnement
4. Maîtrise de la demande
```

"Le secteur de l'énergie au Maroc est servi par les sources fossiles, presque intégralement importées, qui couvrent près de 90% de la consommation énergétique primaire du pays en 2017 (pétrole 62%, charbon 21,7%, gaz naturel 5%). Les énergies renouvelables, quant à elles, contribuent pour 9%, surtout la biomasse (7%) et les importations d'électricité pour 2,2% (Figure 24).

La consommation d'énergie primaire totale est de 20,5 Mtep en 2017, soit 0,57 Tep/habitant, représentant en effet 30% de la moyenne mondiale et 85% de la consommation moyenne africaine, alors que les émissions de CO₂ s'élèvent à 1,60 t CO₂ par habitant en 2015, correspondant à 36% de la moyenne mondiale et supérieure de 58% par rapport à la moyenne africaine."

En 2017, la production électrique du Maroc était basée pour plus de 80% sur les énergies fossiles. La production d'électricité s'élevait à 32,8 TWh (Figure 25).

Figure 25: Génération d’électricité par source d’énergie (Année : 2017)

Aujourd'hui, le Maroc est bien engagé sur la voie de la transition énergétique. Les programmes ambitieux initiés dans le cadre de la stratégie énergétique marocaine enregistrent, en effet, des avancées satisfaisantes, en raison de l'expertise développée localement et du grand intérêt manifesté par les opérateurs internationaux envers ces programmes. Les objectifs fixés à l’horizon 2020 dans le cadre de cette stratégie peuvent être atteignables, notamment pour l’éolien. Les programmes pour atteindre les objectifs fixés à l’horizon 2030 sont bien définis.

1.2.2. Les besoins en eau du secteur énergétique

D’un côté, "la production d’énergie nécessite, à des degrés divers, des quantités parfois importantes d’eau que ce soit pour la génération d’électricité, pour le développement des sources d’énergie organiques (bois, agro-carburants), pour le nettoyage, pour le refroidissement..." Ceci est vrai, à l’évidence, pour les barrages hydroélectriques et, également, pour les centrales produisant de l’électricité à partir de sources fossiles ou de sources renouvelables. C’est aussi le cas pour les sources d’énergie vertes, utilisées comme alternatives potentielles aux hydrocarbures, notamment les agro-carburants ou la biomasse.

De l’autre côté et par voie de conséquence, la production d’électricité dépend de l’eau, et peut se trouver atténuée dans un contexte de déséquilibre climatique qui rend l’eau une denrée rare. C’est pour souligner cette étroite interdépendance que la relation eau-énergie est souvent évoquée aujourd’hui, où toute politique énergétique, qui ne prendrait pas en compte adéquatement l’enjeu de l’eau, est vouée à l’échec et inversement.

Concernant les projets solaires à concentration, quels que soient les procédés énergétiques choisis, à technologie solaire thermique à concentration est une grosse consommatrice d’eau, pour assurer le refroidissement ou le nettoyage des panneaux solaires.

Or, et sans tenir compte des détresses hydriques que connait le Maroc ces dernières années, en général, et la région semi-désertique de Ouarzazate, en particulier, c’est la première solution qui a été choisie, sachant que "le système de refroidissement entraîne une consommation annuelle d’eau de 2 à 3 millions de m³ par an.

Enfin, la production d’électricité solaire dans des centrales thermiques à concentration (à distinguer du solaire photovoltaïque) nécessite généralement une consommation substantielle d’eau (pour le refroidissement et le nettoyage des installations), qui peut témoigner d’une contradiction avec l’état des ressources hydriques dans les régions arides et désertiques, où les centrales solaires trouvent les sites les mieux indiqués.

L’élévation des niveaux de températures et l’assèchement de l’air ambiant peut aussi constituer une menace directe pour le fonctionnement des centrales électriques. Des sécheresses sévères entraînent, en effet, une baisse des débits des cours d’eau et une remontée de leur température. Elles peuvent constituer une contrainte à la production d’électricité, en astreignant à mettre en interruption ou au ralenti certaines centrales thermiques à combustion.

A ces complications de génération d’électricité, s’ajoutent des difficultés de nature plus systémique. Globalement, les menaces accrues des phénomènes extrêmes (pluies intenses, inondations et élévation du niveau de la mer) pourraient provoquer davantage de préjudices aux infrastructures de production et de transport d’énergie et d’électricité. Avec la multiplication et l’amplification des phénomènes climatiques extrêmes, la demande électrique serait plus élevée aussi bien en hiver pour le chauffage, qu’en été pour la climatisation.

"En conclusion, l’interdépendance de toutes les formes d’énergie envers les ressources en eau est un nouvel argument pour mettre l’accent non seulement sur la transition vers des sources d’énergies vertes ou “décarbonées”, mais aussi sur l’inévitable recours à l’efficacité énergétique, comme composante fondamentale de la transition énergétique” 34.

1.2.3. Les énergies renouvelables

Historiquement, les sources d’énergie renouvelables les plus exploitées ont été la biomasse et l’hydroélectricité. La biomasse traditionnelle, non durable, est encore couramment utilisée pour le chauffage et la cuisson dans plusieurs régions du pays, notamment en milieu rural. Ces dernières années, des technologies d’énergie renouvelable plus innovantes ont fait leur entrée dans le mix énergétique, à savoir l’énergie éolienne et l’énergie solaire pour la production de l’électricité et de la chaleur (eau chaude).

Le déploiement et l’importance des énergies renouvelables sont particulièrement remarquables dans le secteur de l’énergie. En ce qui concerne la capacité électrique renouvelable installée, plus de 4 gigawatts (GW) est en place depuis 2018, dont près de 45% est hydroélectrique (Figures 26 et 27).

Un certain nombre de projets de grande envergure sont opérationnels, en cours de développement ou en phase de test final, notamment le projet éolien de 850 MW, la troisième et quatrième phases du complexe solaire d’Ouarzazate Noor, ainsi que d’autres projets solaires.

Figure 26: Capacité électrique installée entre 2009 et 2020

![Graphique de l’évolution de la puissance installée de 2009 à 2020](image)

Source : Direction de l’Observation et de la Programmation/MEME, Janvier 2013 ; La nouvelle Stratégie Énergétique Nationale- Bilan d’étape

Figure 27: Capacité de production (MW) de sources renouvelables à fin 2018

![Graphique de la production de diverses sources renouvelables](image)

Source : Ministère de l’Energie, des Mines et de l’Environnement
L’encadré 1 ci-dessous présente les tendances des énergies renouvelables.

La Figure 28 ci-après synthétise la Vision 2030 de la transition énergétique au Maroc.

1 2.4. Principaux défis énergétiques à relever à l’horizon 2025

La nouvelle politique énergétique marocaine, sous l’Impulsion Royale, accorde une place très avancée aux énergies renouvelables et à l’efficacité énergétique.

En 2009, date du lancement de la stratégie énergétique nationale, la part des énergies renouvelables dans la consommation en énergie primaire représentait près de 5% puis 8% en 2012 pour atteindre près de 12% en 2020 et près de 20% en 2030. Leur part en termes de capacité de production électrique atteindra 42 % en 2020 et 52% en 2030, conformément aux engagements du Royaume dans le cadre de l’Accord de Paris sur le Climat à travers sa Contribution Déterminée au niveau National (CDN).

L’encadré 2 ci-dessous présente les principaux défis énergétiques à relever à l’horizon 2025.

Encadré 1. "Tendances des énergies renouvelables"

Dans le secteur de l’énergie, les énergies renouvelables sont de plus en plus utilisées pour la production d’électricité. Environ 181 GW de capacité renouvelable a été ajoutée en 2018 - établissant un nouveau record juste au-dessus celui de l’année précédente. Globalement, « les énergies renouvelables représentent environ un tiers de la production totale d’électricité installée mondiale ». Près des deux tiers (64%) des installations en 2018 provenaient de sources renouvelables, marquant la 4ème année consécutive que les capacités additionnelles de production renouvelable étaient supérieures à 50%

Dans les pays du Sud de la Méditerranée occidentale, « l’énergie hydroélectrique représente plus de 1,6 GW, l’énergie éolienne 1,3 GW et l’énergie solaire 0,8 GW (source IEA, 2017 »). Toutes les autres technologies utilisant des énergies renouvelables en sont encore aux premières phases de développement.

Néanmoins, un certain nombre de pays ont réalisé des progrès significatifs dans la mise en œuvre de projets d’énergie renouvelable. Par exemple, le Maroc est en voie d’atteindre ses objectifs d’énergie renouvelable fixés à 42% de la capacité totale installée.

À partir de 2017, les énergies renouvelables sont devenues la première source de production au Maroc, atteignant environ 3 GW (environ 34% de la capacité totale d’électricité installée) ".

Source : Renewables 2019 Global Status Report, REN21 et Développement de l’Expert
“Les énergies renouvelables représentaient près de 35% de la capacité totale de la production électrique installée à fin 2018. Dans le contexte actuel, le secteur de l’énergie est caractérisé par la croissance soutenue de la demande énergétique et par une liaison forte vis à vis de l’extérieur (93,9% en 2017), avec une prépondérance des produits pétroliers dans la balance énergétique”35.

Figure 28: Vision 2030 de la transition énergétique

![Diagram of energy transition acceleration](source:Présentation Mme ETIKA, Directeur EREE, 2017)

1.2.5. Station de transfert d’énergie par pompage au Maroc

Il s’agit d’un projet de stockage d’énergie, portant sur la réalisation de la station de transfert d’énergie par pompage (STEP) d’Abdelmoumen, à 70 km d’Agadir, dont la mise en service est prévue en avril 2022.

L’équipement électromécanique de la station comprend, entre autres, deux turbines de 175 MW chacune et l’installation d’un poste à haute tension. La STEP d’Abdelmoumen constitue donc un moyen de stockage de l’énergie sous forme hydraulique.

La transition énergétique n’est pas une obligation mais une démarche volontariste nécessaire. Pour satisfaire aux objectifs climatiques, le développement d’un “modèle énergétique durable” qui renforce l’utilisation de sources d’énergie renouvelables et l’exploitation des potentiels d’efficacité énergétique est une voie incontournable.
1.2.6. Biomasse-Energie

"Au Maroc, l’utilisation du bois de feu représente une part importante dans le mix énergétique national, avec près de 18% de la consommation énergétique nationale. Cette consommation est généralement concentrée en milieu rural (88%) pour satisfaire les besoins de la cuisson et du chauffage.

L’usage dans l’urbain se fait essentiellement dans les établissements socioéconomiques et artisanaux, tels les hammams, les fours à pains collectifs, les pressings, les briqueteries, les poteries et, également, dans les habitats, sous la forme de charbon de bois essentiellement.

La forêt ne peut produire, de manière durable, que le tiers de ce qui est consommé à l’échelle nationale, soit près de 11 millions de tonnes. Le déficit de plus de 7 millions de tonnes, étant assuré par la consommation du capital bois, l’utilisation de déchets agricoles et d’autres ressources comme le bois de tailles des arbres fruitiers et déchets divers. Mais, globalement, c’est la forêt et les bassins versants qui subissent le plus de dégradation”36.

Le biogaz des rejets ménagers solides et liquides, ainsi que celui des déchets agricoles et d’élevage, représentent un potentiel énergétique important du fait qu’une grande partie des déchets est constituée de composants organiques, qui, jusqu’à présent, restent sous exploités. Plusieurs travaux et études ont été réalisés et, pourtant, ce potentiel n’a pas encore fait l’objet de stratégies nationales, même si quelques actions pilotes ont été réalisées (foyers et fours à pain, chaudières pour hammams améliorés ...). L’électricité verte produite par cette filière reste, également, tributaire de la refonte de la loi 13.09 ouvrant l’accès à l’injection dans les réseaux de lignes à moyenne tension et à basse tension.

La filière photovoltaïque a connu entre 2010 et début 2017, une forte croissance de la capacité du parc solaire photovoltaïque mondial installé qui a évolué de 0,8 GW à plus de 300 GW. Les prix des modules solaires photovoltaïques ont diminué de 80% à 85% durant cette période et le coût complet de production électrique actualisé des installations aurait baissé de 67% en moyenne – une baisse tirée par les grandes installations.

Selon l’Agence Internationale de l’Energie, il s’agit de la filière productrice d’électricité qui verra le plus fort déploiement dans les 5 années à venir, (cf. https://www.connaissancedesenergies.org/).

1.3 L’agriculture irriguée : moteur du monde rural

1.3.1. L’agriculture irriguée : un secteur dynamique, productif et stabilisateur

Le Maroc a une grande tradition ancestrale de recours à l’irrigation, comme en témoignent les "Khetaras" du Haouz, les terrasses irriguées du Haut Atlas, les systèmes de valorisation des eaux de crues dans les oasis et les procédés de collecte des eaux de pluies dans les "Foums" au Sahara. Les agriculteurs marocains ont développé des systèmes ingénieux pour faire face aux conditions semi-arides contraignantes du pays.

Les politiques agricoles ont consolidé ces acquis et ont continué à soutenir des programmes ambitieux et continus de développement de l’irrigation (politique des barrages et objectif du million d’hectares à irriguer).

La nouvelle stratégie agricole, à savoir le Plan Maroc Vert (PMV), est venue renforcer ces politiques. Sur la période 2009-2018, l’investissement de l’Etat, à lui seul, s’élève à 36 Milliards de dirhams. A ceci s’ajoutent les importants investissements effectués par le secteur privé national, ainsi que les contributions apportées par la coopération internationale.

A ce jour, l’agriculture irriguée couvre 1,6 millions d’hectares, soit 18 % de la superficie totale cultivable du pays et 21 % des surfaces emblavées annuellement. Les superficies équipées par des systèmes d’irrigation localisée ont atteint 560 000 hectares.

Par ailleurs le secteur irrigué totalise 75 % des exportations, crée 50 % de l’emploi rural et contribue en moyenne à 4% du PIB du secteur agricole. Pendant les années de sécheresse, comme celle de 2016, cette contribution a atteint 75 % du PIB agricole, constituant, ainsi, une véritable assurance contre les aléas37.

Il faut souligner que l’utilisation intensive des nouvelles technologies, a permis de produire trois fois plus avec la moitié du volume d’eau utilisé. L’irrigation au goutte-à-goutte a permis d’économiser annuellement 1,6 milliard de mètres cubes d’eau. Les programmes hydro-agricoles ont permis de valoriser 2 milliards de mètres cubes d’eau/an.

Par ailleurs, l’amélioration de la production agricole assure la résilience vis-à-vis des changements climatiques et contribue au renforcement de la sécurité alimentaire du pays et à la stabilisation du Produit intérieur brut (PIB) du secteur agricole.

Ainsi, l’agriculture irriguée continue de jouer un rôle stabilisateur et tampon face aux sécheresses récurrentes.

37 Ministère de l’Agriculture, des Pêches maritimes, du Développement Rural et des Eaux et Forêts
1.3.2. Les défis majeurs de l’agriculture irriguée

La cartographie de la situation actuelle montre que l’agriculture irriguée fait face à trois principaux défis : un potentiel hydrique qui a atteint ses limites, une démographie galopante et consommatrice d’eau et des changements climatiques contraignants (Figure 29).

Figure 29: Les trois défis de l’agriculture irriguée

<table>
<thead>
<tr>
<th>Limites du potentiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>90% des ressources hydriques sont déjà mobilisées</td>
</tr>
<tr>
<td>Noue rentrons dans une phase de surexploitation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Démographie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baisse de la SAU disponible par habitant (43ha/100 hab. en 1980 vs 22ha/100hab. en 2020</td>
</tr>
<tr>
<td>Cycle de productivité continu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Changement climatique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sécheresses plus fréquentes</td>
</tr>
<tr>
<td>Réduction des allocations d’eau d’irrigation fournie par les ABH de 30 à 60%</td>
</tr>
</tbody>
</table>

- **Défi 1 : Potentiel limité en ressources en eau**

L’agriculture, qui est la plus grande utilisatrice des ressources en eau mobilisées du pays, connaîtrait des pressions et restrictions importantes du fait que les 15% des allocations d’eau à usage domestique continueront à croître.

Ainsi, le Maroc est passé, en quelques décennies, d’une situation favorable à une situation de stress hydrique. Actuellement, la dotation par habitant et par an actuelle (environ 600 m³/an/habitant) se situe au-dessous du seuil du stress hydrique (soit 1000 m³/an/habitant) et avoisine le seuil de pénurie d’eau fixé au niveau mondial (500 m³/an/habitant).
• Défi 2 : Démographie sans cesse croissante

En effet, d’un bien disponible, l’eau extrêmement dépendante des changements climatiques est devenue la pièce maîtresse qui conditionne l’agriculture, la sécurité alimentaire, la sécurité sanitaire, l’énergie et l’équité entre genres, entre catégories sociales et entre les mondes urbain et rural.

Entre 1980 et 2020, la surface agricole utile disponible pour 100 habitants est passée de 43 à 22 hectares (Figure 30). Ceci exige de doubler la production par hectare juste pour maintenir la situation actuelle\(^\text{38}\).

En parallèle, l’urbanisation, l’amélioration des revenus et le changement des habitudes alimentaires créent des demandes de plus en plus importantes sur les denrées essentielles. Ainsi, les augmentations de la demande entre 2000 et 2020 dépassent 44\% et atteignent 81\% pour les céréales, les huiles, le sucre, les fruits-légumes, les viandes rouges et le lait (Figure 31). Ceci constitue un grand défi pour assurer la sécurité alimentaire\(^\text{39}\).

Figure 30: Réduction de la surface agricole utile (SAU) disponible par habitant

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure30.png}
\caption{Réduction de la SAU Disponible par Habitant (Ha Pour 100 Habitant)}
\end{figure}

\textit{Source: Ministère de l’Agriculture de la Pêche maritime du développement rural et des Eaux et forêts (2010)}

\(^{38}\) Ministère de l’Agriculture, des Pêches maritimes, du Développement Rural et des Eaux et Forêts (MADRMEF)

\(^{39}\) MADRPMEF, Belghiti et al, 2016
• Défi 3 : Changements climatiques

Selon les données du Plan National de l’Eau, les apports en eau au niveau national ont connu des baisses importantes. Sur les 6 dernières décades, les apports moyens en eau ont connu des réductions qui dépassent 40% par rapport aux apports antérieurs.

De ce fait, même les zones irriguées ont été touchées par ces sécheresses fréquentes. Sur les trois dernières décennies, les apports annuels par les précipitations ont connu des baisses importantes (Figure 32).

Figure 32: Réduction des apports en eau aux périmètres irrigués sur les dernières décades

En conséquence et dans plusieurs régions du Maroc, les allocations de l’eau d’irrigation fournies par les Agences de Bassin Hydraulique aux périmètres irrigués ont connu des baisses de plus de 40% par rapport aux dotations annuelles normales.

40 Ministère de l’Économie et des Finances, PNE cité par la FAO, 2018
1.3.3. Des acquis importants à valoriser : Le Plan Maroc Vert

Pour relever ces défis et atténuer les pressions sur l’agriculture irriguée, le Maroc dispose de plusieurs acquis et atouts importants qui sont présentés et analysés ci-dessous.

- **Acquis 1. Un secteur irrigué dynamique et stabilisateur**

Depuis des décennies, l’agriculture irriguée occupe une place prépondérante dans la stratégie de développement national. Le poids économique de l’agriculture, ses bénéfices sociaux, sa contribution à l’amélioration de la productivité, sa contribution à la création d’emplois, à l’amélioration des revenus et à la stabilité du monde rural sont importants et reconnus (Figure 33).

Figure 33: Contribution de l’irrigué à l’économie nationale

<table>
<thead>
<tr>
<th>Outil de Développement</th>
<th>18% Surface cultivable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50% de l’emploi rural</td>
</tr>
<tr>
<td>Accès aux marchés, eau potable, électricité, écoles et santé</td>
<td>75% des exportations</td>
</tr>
<tr>
<td></td>
<td>Base de l’agro-industrie</td>
</tr>
<tr>
<td></td>
<td>45% du PIB Agricole</td>
</tr>
<tr>
<td></td>
<td>75% du PIBA en Année Sèche</td>
</tr>
<tr>
<td></td>
<td>Fournisseur Principal:</td>
</tr>
<tr>
<td></td>
<td>Légumes, fruits, lait et viandes</td>
</tr>
</tbody>
</table>

Source : Données du Ministère de l’Agriculture, du Développement Rural et des Pêches Maritimes, 2018

En fait, au niveau national, le secteur agricole est le plus grand utilisateur des ressources hydriques.

En effet, selon le Projet de Plan National de l’Eau (2015), l’irrigation consomme 85% des ressources, suivie par l’eau potable, qui utilise 10% et 5% sont utilisés pour les autres usages. Le département de l’agriculture signale que son niveau de consommation réel est de 8,5 Milliards m³/an, comparé aux 12 Milliards m³/an du Plan National de l’eau.
Ceci pose des défis sérieux pour l’agriculture future du fait que les besoins en eau potable, prioritaires, vont continuer à augmenter.

Par ailleurs, le développement des périmètres irrigués a permis, via l’amélioration des infrastructures de base, de créer des conditions favorables pour le développement d’activités économiques annexes et d’accès aux marchés.

De ce fait, l’irrigation permet, d’induire des effets indirects et de faire bénéficier les zones rurales d’autres services privés et publics, notamment les hôpitaux et les écoles. C’est ainsi, qu’autour des périmètres irrigués, il est observé un développement économique et social et des investissements privés et sociaux générateurs d’emplois.

Acquis 2 : Le Plan Maroc Vert (PMV) - Stratégie & Réformes Institutionnelles

En 1966, les pouvoirs publics ont opté pour la décentralisation au niveau régional par la création de structures autonomes intégrant l’ensemble des services nécessaires au développement de l’agriculture irriguée dans les grands périmètres : les Offices Régionaux de Mise en Valeur Agricole (ORMVA).

Depuis 2008, le Gouvernement a lancé une nouvelle stratégie appelée "Plan Maroc Vert (PMV). "Cette stratégie est fondée sur deux piliers. Le premier pilier cible l’agriculture moderne à haute valeur ajoutée et le second pilier vise l’amélioration de la productivité des petites exploitations".

Plusieurs réformes transverses ont été implémentées et ont porté sur l’eau agricole, les structures administratives, le foncier et la profession agricole. Par ailleurs, Le Plan Maroc Vert a renforcé la mise en place des mécanismes et des systèmes d’incitations pour continuer à développer le secteur irrigué, secteur vital et stabilisateur de l’économie nationale (Figure 34).
Figure 34: Piliers et réformes du Plan Maroc Vert

- **Acquis 3 : Modernisation, Extension, Partenariat**

Ceci passe par la redynamisation des Offices Régionaux et la Mise en Valeur Agricole (ORMVA), l’amélioration des services de l’eau, le recouvrement des coûts, le renforcement de la maintenance des réseaux, la promotion de nouvelles technologies, la facilitation du rôle des Associations d’Usagers d’Eau Agricole et des partenariats public-privé dans la gestion des périmètres irrigués et dans la réalisation de nouveaux projets d’irrigation.
Ainsi, le département de l’Agriculture a mis en œuvre une stratégie articulée autour de trois composantes : Le Plan National d’Économie d’Eau d’Irrigation (PNEEI), le Programme d’Extension de l’Irrigation (PEI) et le Programme de Partenariat Public-Privé (PPP) :

✓ **Le Programme National d’Économie d’Eau en Irrigation (PNEEI)**

"Le Programme National d’Économie d’Eau en Irrigation, doté d’un budget global de 37 milliards de dirhams, s’était fixé un objectif de 550.000 hectares irrigués au goutte-à-goutte au terme du PMV en 2020. Cet objectif est déjà dépassé du fait que 560.000 hectares ont déjà été équipés. L’impact sur les ressources hydriques est significatif puisque ce programme a permis, depuis son lancement en 2009, d’économiser et de valoriser 1,6 milliards de mètres cubes“\(^{41}\).

"En 2018, l’irrigation localisée représentait 35% de l’ensemble des superficies irriguées. Le nouvel objectif du Plan Maroc Vert est de porter ce ratio à 41% à l’horizon 2020, avec 660.000 hectares équipés en goutte-à-goutte.

Par ailleurs, la modernisation des réseaux d’irrigation a porté sur une superficie de 123.000 hectares (56% de l’objectif 2020 du PMV). Ce programme a préparé des conditions préalables favorables à l’installation de l’irrigation au goutte-à-goutte dans les grands périmètres irrigués. Le programme de modernisation des réseaux d’irrigation a mobilisé une enveloppe de 5,6 milliards de dirhams sur la période 2009-2018“\(^{42}\).

Pour les perspectives futures (2019-2026), un nouveau modèle d’intervention est proposé, dans le cadre de la nouvelle stratégie. L’objectif, selon le département de l’agriculture, est de "moderniser les réseaux d’irrigation sur 100 000 hectares supplémentaires“. L’équipement des exploitations agricoles en goutte-à-goutte se maintiendra, moyennant une enveloppe budgétaire de 8,5 milliards de dirhams (Figure 35).

\(^{41}\) Ministère de l’Agriculture, des Pêches maritimes, du Développement Rural et des Eaux et Forêts

Le Programme d’Extension de l’Irrigation (PEI)

Ce programme porte sur l’extension des aménagements hydro-agricoles et sur la création de nouveaux périmètres d’irrigation sur tout le territoire national. L’objectif visé est l’extension de l’irrigation sur 155 500 hectares en 10 ans, avec un investissement total de 19,5 milliards de dirhams.43

Selon le bilan présenté par la Direction de l’Irrigation, ce programme a touché essentiellement les périmètres irrigués alimentés par les grands barrages.

Dans ce cadre, douze projets hydro-agricoles ont été lancés, depuis 2009, avec un effort budgétaire de 8,6 milliards de dirhams d’investissement. Globalement, une superficie irriguée totale de 82.300 hectares a été réalisée, soit 51% de l’objectif 2020.44

Par ailleurs, les appuis et programmes d’accompagnement déployés dans le cadre du PEI par les services de l’irrigation ont permis la valorisation de 535 millions de mètres cubes d’eau des barrages, sur un objectif de 1,2 milliards de mètres cubes.45

En outre, la Petite et Moyenne Hydraulique a vu le développement et l’extension des infrastructures hydrauliques sur une superficie de 151.200 ha, soit l’équivalent de 150% de l’objectif 2020.46

43 Ministère de l’Agriculture, des Pêches maritimes, du Développement Rural et des Eaux et Forêts
44 Ministère de l’Agriculture, des Pêches maritimes, du Développement Rural et des Eaux et Forêts
45 Idem
46 Ibid
Pour les perspectives futures (2019-2026), il est proposé la création de nouveaux périmètres irrigués sur une superficie de 40 000 hectares. La région du Gharb à elle seule bénéficiera de l’équipent d’une superficie de 30 000 hectares, soit les trois quarts de la superficie totale projetée. Ces programmes prioritaires nécessiteront une enveloppe budgétaire de 8 milliards de dirhams d’investissement (Figure 36).

Figure 36: Bilan de l’extension des surfaces irriguées

![Diagram showing extension of irrigated areas](image)

✓ Le Programme de Partenariat Public-Privé en irrigation (PPP)

Ce volet est une composante complémentaire des volets précédents. Le partenariat vise à impliquer le secteur privé dans le développement et la gestion des projets hydro agricoles. La réussite des projets exige d’associer les partenaires privés depuis la conception des projets en passant par le financement, la réalisation, l’exploitation, la maintenance et la gestion des projets.

Dans ce cadre, les cinq projets innovants ci-dessous (Figure 37) ont été lancés pour répondre à des besoins spécifiques régionaux.
1.4 Les écosystèmes naturels: des espaces diversifiés et vulnérables à la sécheresse

1.4.1. Cadre biogéographique et fonctions des écosystèmes naturels

Le Maroc, en raison de sa position géographique, de ses reliefs et de son climat, se caractérise par une grande diversité écosystémique, avec une gamme très importante de milieux naturels ainsi qu’avec une importante diversité floristique et faunique.

Les espaces boisés naturels, qui constituent le domaine forestier marocain, comportent 40 types d’écosystèmes terrestres (forêt, steppe et écosystèmes sahariens) (Figure 38) et des écosystèmes des eaux continentales ou zones humides (lacs, cours d’eau, sources et grottes, estuaires et lagunes).

47 Dans le présent rapport les écosystèmes naturels désignent les écosystèmes forestiers sensu stricto et les écosystèmes des eaux continentales ou zones humides.
Sur le plan de l’occupation et du statut foncier des terres, les écosystèmes forestiers, domaine privé de l’État, grevé de droits d’usage reconnus aux populations riveraines, s’étendent, d’après le premier Inventaire Forestier National réalisé entre 1990 et 2005, sur 9 631 896 hectares, soit un taux de couvert de 13,5 % du territoire national.

Ils sont constitués de formations forestières "sensu stricto" (6 164 413 hectares, soit 64%) et de steppe d’alfa (3 467 400 hectares, soit 36 %) dans les plaines et hauts plateaux arides du Maroc oriental.

La flore vasculaire est massivement représentée au sein des écosystèmes forestiers où vivent près des deux tiers des 4500 espèces recensées dans le pays (Figure 38), le tiers restant étant partagé entre les formations steppiques et les biotopes humides qui font partie aussi du domaine forestier.49

"C’est au sein de ces écosystèmes forestiers que sont également concentrées les principales plantes aromatiques et médicinales (PAM), constituant un potentiel pour des activités socioéconomiques lucratives pour le développement des populations vivant dans les régions forestières ou péri forestières"51.

49 Fennane et I. Tattou, 1998
50 Administration des Eaux et Forêts et de la Conservation des Sols, 1995
51 Mhirit et al. 1999
Les zones humides comptent près de 300 sites délimités dans le cadre de l’inventaire des zones humides, constituant près de 400 000 hectares, soit 0,6 % de la surface du territoire national. Dans cet inventaire, sont inclus environ 170 lacs de barrages, dont l’étendue totale avoisine les 120 000 hectares.

Le Maroc possède actuellement 31 sites inscrits sur la liste des zones humides d’importance internationale (Sites Ramsar), ayant une superficie totale de 279.026 hectares.

52 Dakki, Meniouï et Amhaouch, 2015
La figure 39, ci-dessous, permet de visualiser une typologie des zones humides du point de vue de leur dynamique hydrologique.

Ces écosystèmes, étroitement liés à la présence de l’eau, peuvent être d’origine naturelle (cours d’eau, sources, marécages, estuaires, lacs de montagnes, …) ou créés par l’homme (lacs de barrages, étangs, …)53.

Figure 39: Diversité des types de zones humides du point de vue de leur dynamique hydraulique

Ils peuvent être classés en deux grandes catégories en fonction de facteurs physiques, écologiques et historiques :

- **Les zones humides continentales**, liées principalement à la présence des chaînes de montagnes, relativement arrosées, caractérisées par une forte diversité des régimes hydrologiques et thermiques.

53 FAO. 2015, AMCDD, 2018
Les zones humides côtières différenciées le long du littoral marin, à l’origine d’une mosaïque complexe d’habitats, résultat des multiples combinaisons de facteurs écologiques dominants (hydrodynamisme, salinité, nature et granulométrie du substrat, inclinaison des fonds, régimes thermiques, force et fréquence des vents...).

Le littoral marocain est marqué aussi par de nombreuses baies plus ou moins ouvertes (Al Hoceima, Ksar Sghir, Tanger, El Jadida, Agadir, Cintra, Dakhla...) et interrompu par plus de 300 estuaires, de formes et de conditions écologiques variables et par six lagunes (Nador, Smir, Merja Zerga, Sidi Moussa, Oualidia et Khnifiss).

Les zones humides abritent une très riche variété de plantes qui, dans l’état actuel des connaissances, s’élève à près de 3290 espèces, dont 1477 plantes (*algues et phanérogames*) et plus de 1812 espèces animales recensées dans les eaux continentales du pays54.

En plus de leur rôle socioéconomique les écosystèmes naturels remplissent de nombreuses fonctions en rapport avec l’eau 55(Encadré 3).

Encadré 3. "Fonctions hydrologiques principales des écosystèmes naturels"

Ecosystèmes forestiers
- **Régulation du régime hydrique** et protection des retenues de barrages contre l’envasement, évalué à 75 millions m³/an, soit une réduction de leur capacité de stockage de 0,5%/an correspondant à une perte de capacité d’irrigation de 10 000 ha/an ;
- **Préservation de la fertilité des sols** et maintien de la productivité des terres agricoles
- **Lutte contre les inondations** et protection des infrastructures de base.

Zones humides
- **Rôle d’éponge** dans la régulation du débit des cours d’eau, la prévention des inondations, l’alimentation des nappes phréatiques, l’épuration des eaux : stockage de l’eau en période humide et alimentation des cours d’eau en période sèche”.

Source : Mhirit, 2019

54 Dakki, 2006
55 OZHM, 2018
1.4.2. Processus, facteurs et impacts des modes d’utilisation des écosystèmes Forestiers

L’analyse des processus, des facteurs ainsi que les impacts des différentes formes d’utilisation de ces espaces selon le modèle DPSIR (Forces motrices de changement-Pressions-Etat-Impacts - réponses56 ont permis de dégager les "tendances lourdes", les germes de changement et les principaux déterminants (Encadré 4) qui orientent la stratégie et les axes d’intervention du secteur.

\textbf{Encadré 4. "Tendances lourdes, germes de changement et déterminants des écosystèmes naturels}

\begin{itemize}
 \item \textbf{1. Tendances lourdes (Evolution lente mais susceptible d’être infléchie)}
 \begin{itemize}
 \item Tendance climatique vers une sécheresse de type édaphique : Occurrence des sécheresses :
 1940-70 : 5 sur 40 ans (1,5%) 1980-95 : 6 sur 16 ans : (37,5%), 1996-2002 : 4 sur 7 ans (57%) ;
 \item Recul de la forêt : déboisement (6000 ha/an) ; dégradation (11000 ha/an)
 \item Extension des terres cultivées au dépend des forêts et parcours : SAU: 7 Mha en 1970 et 8.7 Mha en 2016)
 \item Érosion et perte de fertilité des sols : Baisse de la productivité et envasement des retenues des barrages ;
 \item Développement de l’urbanisation au dépend des terres boisées et des ZH 2000 ha/an ;
 \item Surexploitation des ressources naturelles des ZH : Pompage excessif des eaux et asséchement des ZH (Ex: Dayet Aoua), surpâturage, braconnage....;
 \item Pollution liquide et solide des ZH : Agriculture, Industries et Tourisme
 \item Disparition des ZH : 25 % entre 1978 et 1999.
 \end{itemize}
 \item \textbf{2. Germes du changement (Signaux faibles, porteurs d’avenir)}
 \begin{itemize}
 \item Politiques de décentralisation et de déconcentration ;
 \item Élargissement de la mission du secteur pour intégrer de nouvelles demandes (lutte contre la désertification, biodiversité, paysage et tourisme, forêts périurbaines, développement local,...)
 \item Émergence de fondations, d’agences de développement et d’un mouvement associatif en faveur de la gestion et la protection de l’environnement et du développement social (INDH, ...)
 \item Promotion des énergies alternatives et de technologies d’économie d’énergie de biomasse ;
 \end{itemize}
 \item \textbf{3. Déterminants (Facteurs clefs de succès)}
 \begin{itemize}
 \item Autorité régalienne soutenue par l’État et acceptée par la société ;
 \item Volonté politique et capacité d’assurer la pérennité des écosystèmes naturels ;
 \item Mobilisation de la société civile en faveur de la préservation des écosystèmes et de la lutte contre la désertification ;
 \item Moyens financiers à la mesure des enjeux de préservation des fonctions socio-économiques et environnementales des écosystèmes naturels".
 \end{itemize}
\end{itemize}

Source : Mhirit, 2019

56 Mhirit et al, 1999 ; Mhirit, 2014
1.4.3. Analyse de la demande en eau forestière et des zones humides et de leur évolution

En l’état actuel des connaissances, la communauté scientifique admet que “les bassins versants boisés fournissent un important pourcentage du volume d’eau utilisé dans les usages domestiques, agricoles et industriels. La disponibilité et, notamment, la qualité de l’eau sont fortement influencées par les forêts et dépendent, dès lors, de leur bonne gestion.\(^{57}\)

Les précipitations et leur variabilité constituent, sous nos climats, le facteur discriminant de la distribution des espèces et de leur croissance. La figure 40 présente le tempérament des espèces climax en fonction des précipitations. Les limites des rectangles correspondent aux valeurs extrêmes entre lesquelles oscille la moyenne annuelle.\(^{58}\)

Figure 40: Tempérament des espèces climax en fonction des précipitations

![Tableau des besoins en précipitations annuelles des espèces climax]

Source: Mhirit et al., 1999

\(^{58}\) Mhirit et al., 1999

D’une manière générale, le cycle de l’eau se développe dans l’ensemble des forêts de la montagne marocaine, comme dans celles du pourtour méditerranéen, d’octobre à septembre suivant quatre phases schématisées dans le tableau 4 ci-dessous.

Tableau 4: Bilan de l’eau d’une année pour les types de forêts de cèdres au Maroc

<table>
<thead>
<tr>
<th>Mois</th>
<th>Jan</th>
<th>Fév</th>
<th>Mars</th>
<th>Avril</th>
<th>Mai</th>
<th>juin</th>
<th>juil</th>
<th>août</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Déc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rif Central (Alt 1550)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rif Central (Alt 2400)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Moyen Atlas (Alt1600)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Moyen Atlas (Alt2100)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Haut Atlas (Alt 2000)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Source : Mhirit, O., 1982

(A) : phase de drainage, la réserve en eau du sol reconstituée : (ETR = ETP)
(B) : ETP > P et R > (ETP-P) : les arbres ne sont pas limités en eau (Phase de croissance)
(C) : Reprise de l’ETP au détriment des réserves en eau, réduction de l’activité photosynthétique. Tout se passe comme si la “demande climatique” (ETP) imposée à l’arbre dépasse “l’offre” (ETR) qui dépend de l’état physiologique, de l’adaptation de l’arbre, et de la quantité d’eau disponible dans le sol
(D) : Phase de reconstitution de la réserve en eau : Le redémarrage de la végétation dépend de la rapidité avec laquelle les réserves se reconstituent et du bilan thermique de l’automne.

"Les zones humides sont des espaces de transition entre les milieux terrestres et aquatiques, qui jouent généralement un rôle de régulation du cycle de l’eau. A l’échelle d’un bassin versant, ces espaces se gorgent d’eau en période humide et la restituent progressivement. Les débits maxima sont donc diminués à l’aval, tandis que les débits minima (étiages) sont augmentés, ce qui se traduit par l’écrêtement des crues et le soutien des étiages"60 (Figure 41).

Figure 41: Cycle de l’eau d’une zone humide

Source : https://www.ecologique-solidaire.gouv.fr/protection-des-milieux-humides

2. Les secteurs du "NEXUS" face au changement climatique

2.1 Impact du changement climatique

Les effets des changements climatiques sont réels et ils ont déjà impacté plusieurs secteurs économiques et sociaux, notamment l’agriculture. L’instabilité des régimes climatiques, les sécheresses extrêmes et les inondations n’ont jamais été aussi fréquentes. Les études menées aussi bien au niveau national que régional et international, rapportent les mêmes tendances : augmentation des températures, baisse des précipitations accompagnées de fortes variabilités et d’événements météorologiques extrêmes.

Le rapport du Groupe International d’Experts sur le Climat de 2019 souligne que même un réchauffement planétaire limité à 1,5 °C provoquerait une augmentation des menaces liées aux pénuries d’eau dans les zones arides, aux préjudices causés par les incendies, à la fonte du permafrost et à l’instabilité du système alimentaire. Si le réchauffement climatique atteint 2 °C, les risques liés à la fonte du permafrost et à l’instabilité du système alimentaire seraient très supérieurs.

Plusieurs modèles climatiques globaux (GCM) sont utilisés pour étudier l’évolution du climat en fonction des scénarios d’émissions associés aux scénarios de réduction des émissions. Quatre scénarios sont souvent considérés : Scénario de réduction des émissions (RCP 2.6), de poursuite des émissions (RCP 8.5) et 2 scénarios intermédiaires (RCP 4.5 et RCP 6.0).

Dans le cadre de "la Troisième Communication Nationale du Maroc à la Convention Cadre des Nations unies sur le Changement Climatique", les projections climatiques ont porté, notamment, sur les précipitations annuelles et les températures moyennes annuelles (Figure 42) pour deux scénarios du GIEC (RCP 2.6 et RCP 8.5).
Figure 42: Projections climatiques du Maroc selon les scénarios 2.6 (favorable)

Pour le scenario RCP 2.6, il est observé pour tous les horizons temporels, une tendance à la baisse des cumuls annuels des précipitations qui varie entre 10% et 20% pour atteindre 30% dans les provinces sahariennes à l’horizon 2100. Pour les températures moyennes annuelles, une tendance à la hausse de 0,5 à 1°C est projetée à l’horizon 2020 et de 1 à 1,5 °C aux horizons 2050 et 2080, sur l’ensemble du pays.

Source : Troisième Communication Nationale sur le Changement Climatique, 2016
Pour le scénario RCP 8.5, les projections prévoient une tendance à la baisse de 0 à 20% des cumuls annuels des précipitations pour les périodes 2016-2035 sur l’ensemble du pays, à l’exception des régions sahariennes (0% à +10%).

Pour la période 2046-2065, les mêmes résultats sont obtenus, avec une distribution spatiale différente. Enfin, la période 2081-2100 se distingue par un record de baisse prévu de 40% à l’Ouest des chaînes de l’Atlas et du Rif (Plaines du Saïs, du Loukkos, du Gharb et de la Chaouia).

Quant aux températures moyennes annuelles, la tendance générale est haussière sur l’ensemble du pays, à l’horizon 2100. Cette hausse oscillerait entre :

- 5 et 7°C dans les régions du Sud-Est de la chaîne de l’Atlas,
- 4 et 5°C dans les régions méditerranéennes, les régions atlantiques ainsi que le centre du pays,
- 3 et 4°C dans les provinces sahariennes61.

Certaines études rapportent des réductions plus drastiques des précipitations qui dépassent 40% pour l’horizon 205062.

L’utilisation de modèles à haute résolution montre les mêmes tendances : augmentation globale des températures sur tout le territoire.

Les travaux de Filahi et al. (2017) rapportent que les augmentations simulées de la température maximale sont plus fortes sur les zones Est Atlantiques (2 à 3°C) et restent modérées sur la côte Atlantique (1°C). Ceci découle des effets combinés de l’océan Atlantique, de la mer Méditerranée, des chaînes de montagne ataliques-rifaines et des influences du Sahara. La même étude confirme les résultats précédents et montre que les précipitations connaîtront une diminution globale sur tout le territoire.

Malgré la variabilité des résultats des simulations des modèles climatiques, les projections confirment une tendance à la hausse des températures et à la baisse des précipitations. “Les températures annuelles moyennes devraient augmenter de 1,1 à 3,5 °C à l’horizon 2060 et de 1,4 à 5,6 °C à l’horizon 2090. Les précipitations connaîtraient des baisses médianes de 15% à 29% et peuvent aller jusqu’à 52% de réduction”63 (Figures 43 et 44).

61 MEMEE, 2016 : Communication Nationale du Maroc à la Convention Cadre des Nations Unies sur les Changements Climatiques, 2016 (avec la contribution de Mohamed Sinan)
62 https://climexp.knmi.nl., Climate Fact Sheet GERICS
Figure 43: Projection des anomalies des températures et des précipitations annuelles moyennes selon différents scénarios d’émission des gaz à effet de serre

(Anomalies par rapport à la moyenne de la période 1970-1999)

Source : CMIP5 (https://climexp.knmi.nl)
Figure 44: Anomalies des températures (°C) et des précipitations (%) au Maroc simulées par l’ensemble des modèles CMIP5 par rapport à la moyenne de la période 1986-2005

(Chaque ligne correspond à un modèle, les lignes en gras à la moyenne multi-modèles. La barre horizontale des boîtes à moustaches représentent la valeur médiane en 2081-2100)

Source : CMIP5 (https://climexp.knmi.nl)
2.2. Les ressources en eau du Maroc et le changement climatique

Le changement climatique est une nouvelle et importante contrainte qui vient s’ajouter aux autres contraintes naturelles et anthropiques. En effet, l’impact du changement climatique se manifeste, notamment, par l’accentuation (en fréquence et en amplitude) des phénomènes climatiques extrêmes, qui sont la sécheresse et les inondations et par la baisse du potentiel des ressources en eau.

• Sècheresses de plus en plus fréquentes

Le Maroc a connu plusieurs séquences de sécheresses variant d’une année sèche isolée à une période continue de cinq années successives. Au cours de ces périodes, des baisses importantes des débits des sources et d’étiage sévères des cours d’eau ont été observés.

Cette situation a été aggravée parfois avec la baisse alarmante des niveaux piézométriques des nappes et des faibles taux de remplissage des barrages. Ces baisses engendrent parfois des difficultés pour l’approvisionnement en eau des populations, notamment en milieu rural, ainsi que la chute de la production agricole.

La production hydroélectrique a subi également des baisses substantielles depuis quelques décennies, en raison de la baisse des apports et des stocks d’eau au niveau des barrages du pays.

• Inondations de plus en plus fréquentes et dévastatrices

Le territoire national est soumis à des crues importantes qui engendrent parfois des dommages très importants des infrastructures publiques (routes, ponts, établissements divers…) ou privées (habitations…), à l’agriculture et peuvent aussi causer de nombreuses victimes parmi la population.

C’est le cas par exemple des graves inondations survenues, le 17 août 1995, dans la vallée de l’Ourika (Haut Atlas du Maroc) où environ 200 décès ont été déplorés et des inondations très récentes de l’été 2019, où plusieurs dizaines de décès ont été déplorés dans les communes d’Ijoukak, d’Asni (Haut Atlas du Maroc au Sud de Marrakech), de Taroudant….
“Le phénomène des inondations n’est pas récent au Maroc, mais il a commencé à être ressenti avec une plus forte intensité durant les dernières décennies, en raison d’une part, de la croissance démographique, de l’essor économique et du développement urbain, agricole, industriel et touristique qui entraînent une occupation croissante des zones vulnérables et, d’autre part, de l’augmentation de l’occurrence de forts orages localisés à l’origine de crues rapides et violentes”⁶⁴.

- **Baisse du potentiel et raréfaction des ressources en eau**

 “Une diminution des ressources est observée dans la quasi-totalité des régions du Maroc, notamment dans les bassins de Oum Er Rbia, de Souss-Massa, de Tensift et de la Moulouya. Elle a été évaluée à 16% depuis 1981 et à 30% dans certaines régions, notamment dans les bassins du Sebou, du Tensift et du Souss.

 Le capital eau/habitant/an est en constante réduction depuis 1960. Il est passé, en effet, d’environ 2560 m³/an/habitant (un des taux les plus élevés au monde) en 1960 à moins de 700 m³/an/habitant (un des taux les plus faibles au monde).

 Les projections effectuées au niveau national et international prédisent pour la région de la rive Sud de la Méditerranée un réchauffement important (augmentation de la température), des réductions importantes de la pluviométrie et des ressources en eau. Le capital eau par habitant devrait poursuivre sa tendance baissière et atteindre le seuil de pénurie d’eau à l’horizon 2040-2050 (500 m³/an/habitant) et probablement même avant cet horizon”⁶⁵(Tableau 5 et Figure 45).

Tableau 5: Projections du capital eau/habitant/an

<table>
<thead>
<tr>
<th>Année</th>
<th>Scénario optimiste</th>
<th>Scénario pessimiste</th>
<th>Moyenne des scénarios optimiste et pessimiste</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>2560</td>
<td>2560</td>
<td>2560</td>
</tr>
<tr>
<td>2000</td>
<td>775</td>
<td>775</td>
<td>775</td>
</tr>
<tr>
<td>2020</td>
<td>575</td>
<td>569</td>
<td>572</td>
</tr>
<tr>
<td>2050</td>
<td>518</td>
<td>464</td>
<td>491</td>
</tr>
<tr>
<td>2080</td>
<td>342</td>
<td>217</td>
<td>279</td>
</tr>
</tbody>
</table>

Source: Sinan et Belhouji, 2015

Figure 45: Résultats des projections des ressources en eau du Maroc aux horizons 2030, 2050 et 2080

Source: Sinan et Belhouji, 2015
2.3. Le secteur de l’énergie face au changement climatique

2.3.1. Pressions et défis futurs face aux enjeux du changement climatique

La transition énergétique prévoit une augmentation des énergies renouvelables, peu émettrices de CO₂, mais leur production dépend fortement des conditions climatiques à court et moyen terme (Encadré 5).

Mesurer et prédir les paramètres climatiques tels que la température, le vent, les précipitations est essentiel pour la gestion des ressources en énergie renouvelables.

Le secteur de l’énergie a besoin d’infrastructures ayant une longue durée de vie, ce qui pourrait accroître le risque de s’enfermer dans une croissance énergétique non durable. En fait, la durée de vie des infrastructures des centrales électriques varie entre 15 et 40 ans (voire plus pour d’autres filières) et celle des lignes de transport entre 40 et 75 ans. Cela signifie qu’il est important de planifier stratégiquement en fonction des prévisions climatiques et de prendre conscience des impacts à long terme du changement climatique.

Outre le fait que l’énergie soit un intrant dans de nombreux secteurs, le secteur de l’énergie dépend, aussi, d’autres secteurs pour fonctionner. Les secteurs de l’eau et de l’agriculture (biomasse) sont des exemples d’intrants indispensables à la production et à la consommation d’énergie, eux-mêmes menacés par les répercussions du changement climatique. Plus important encore, les sources de production du secteur énergétique, telles que l’énergie thermique et hydroélectrique, dépendent toutes des conditions climatiques.

Cette section, analysée dans les tableaux 6, 7 et 8 ci-dessous, porte sur l’impact de quatre facteurs de stress climatiques sur le système énergétique : augmentation de la température, fluctuation des précipitations, phénomènes météorologiques extrêmes (tempêtes, cyclones) et élévation du niveau de la mer66.

Cette analyse s’est focalisée sur trois volets de la chaîne de valeur : la production, la transmission, la distribution et la consommation (usages finaux).

66 Le GIEC a identifié d’autres facteurs de stress climatiques, tels que l’augmentation de l’acidité des océans, non abordé dans cette analyse, car leur impact sur le secteur de l’énergie est moins direct.
Encadré 5. Production hydroélectrique et changement climatique

"La production **hydroélectrique** au Maroc a été particulièrement altérée par le changement climatique. La baisse du volume stocké et de la hauteur de chute d'eau diminue le potentiel hydroélectrique mobilisable. Ainsi la production hydroélectrique a été nettement inférieure à ce qui était escompté : entre 450 et 1500 GWh produits par an depuis une vingtaine d'années avec une moyenne annuelle de 1200 GWh, contre une production prévue de 2200 GWh.

Aussi, "le déclin de la pluviométrie et du débit des rivières devrait entraîner un affaiblissement de la production hydroélectrique". Au fil des années, le Maroc a déjà vu sa production hydroélectrique chuter dramatiquement lors d'épisodes de sécheresses prolongées, sachant que "la capacité de production installée dépassait la part des 20% quelques années auparavant", mais la production électrique oscillait entre 3% et 15% dans les meilleures des cas.

Anticipant une baisse tendancielle de sa production hydroélectrique du fait du dérèglement climatique, le Maroc a commencé à se tourner vers de nouvelles sources d'électricité : le solaire, l'éolien et les fossiles, notamment ".

Source : Etude Plan Bleu, 2011 et Développement de l'Expert

2.3.2. Quel est l’effet du changement climatique sur la production d’énergie ?

Tableau 6: Principaux impacts du changement climatique sur les sources de production d’énergie par facteur de stress climatique

<table>
<thead>
<tr>
<th>Facteur de stress climatique</th>
<th>Tendance au réchauffement</th>
<th>Précipitations</th>
<th>Cyclone</th>
<th>Niveau de la mer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Énergie hydraulique</td>
<td>Des températures élevées peuvent provoquer la fonte des glaciers et augmenter les quantités d'eau dans les bassins hydrologiques.</td>
<td>Les changements dans les précipitations peuvent augmenter la variabilité des écoulements.</td>
<td>Les dommages matériels peuvent diminuer le rendement.</td>
<td>Pas d’impact significatif</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Énergie éolienne</th>
<th>L'augmentation des températures peut réduire la densité de l’air et diminuer la production d’énergie.</th>
<th>Pas d’impact significatif</th>
<th>La modification de la vitesse du vent peut augmenter la variabilité de la production. Les dommages causés par les cyclones peuvent réduire la durée de vie et le rendement de l’installation.</th>
<th>La hausse du niveau de la mer peut endommager les infrastructures en mer.</th>
</tr>
</thead>
</table>

67 L’énergie solaire comprend : le photovoltaïque (PV) et le solaire concentrée (CSP).
68 L’énergie thermique comprend : les centrales alimentées aux combustibles fossiles.
2.3.3. Quel est l’impact du changement climatique sur la transmission et la distribution de l’énergie ?

Les impacts de la variabilité et du changement climatique sur la production d’énergie sont les plus évidents, mais les infrastructures de transport, de transmission et de distribution d’énergie seront également affectées indirectement et directement (Tableau 7).

2.3.4. Quel est l’impact du changement climatique sur la consommation d’énergie ?

Outre la demande en énergie, qui augmente considérablement en raison du développement et de la croissance démographique, l’utilisation de l’énergie changera également. Le réchauffement planétaire entraînera une augmentation des besoins en énergie pour le refroidissement en été et une diminution des besoins en chauffage en hiver. Globalement, des réserves d’énergie et une capacité d’énergie de secours supplémentaires seront nécessaires en cas de péripéties extrêmes, telles que les vagues de chaleur (Tableau 8).

Le changement climatique affectera l’ensemble du secteur de l’énergie, à travers ses impacts et ses politiques. L’ampleur de la transition à faible intensité de carbone et les opportunités d’investissement seront probablement plus importantes sur le secteur de l’énergie que dans les autres secteurs. C’est le cas des projets inscrits dans le cadre de la Contribution Déterminée au niveau National -Maroc, en réponse à l’Accord de Paris sur le Climat.

À l’échelle mondiale, les investissements supplémentaires requis dans le système énergétique pour maintenir la hausse de température, depuis l’ère préindustrielle, sous les 2°C sont estimés entre 190 et 900 milliards de dollars américains par an, du seul côté de l’offre69, bien que cet investissement pourrait avoir d’importants avantages connexes pour l’ensemble des économies.

69 Source: www.irena.org
Tableau 7: Principaux impacts du changement climatique sur la transmission et la distribution de l’énergie par facteur de stress climatique

<table>
<thead>
<tr>
<th>Facteur de stress climatique</th>
<th>Tendance au réchauffement</th>
<th>Précipitations</th>
<th>Cyclone</th>
<th>Niveau de la mer</th>
</tr>
</thead>
</table>

Tableau 8: Principaux impacts du changement climatique sur la consommation d’énergie par facteur de stress climatique

<table>
<thead>
<tr>
<th>Facteur de stress climatique</th>
<th>Tendance au réchauffement</th>
<th>Précipitations</th>
<th>Cyclone</th>
<th>Niveau de la mer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilisateur final</td>
<td>Des températures plus élevées peuvent augmenter la demande en énergie pour le refroidissement et réduire la demande en énergie pour le chauffage.</td>
<td>Les précipitations variables peuvent augmenter les coupures de courant et causer des perturbations. Les inondations et les sécheresses peuvent nécessiter une capacité énergétique d’urgence supplémentaire.</td>
<td>Les conditions météorologiques extrêmes peuvent endommager l’infrastructure de l’utilisateur final et provoquer des pannes de courant.</td>
<td>L’élévation du niveau de la mer peut accroître le besoin en énergie des installations de dessalement (les sources d’eau douce étant menacées) et des techniques d’irrigation économiques en eau (des cultures menacées).</td>
</tr>
</tbody>
</table>

Selon l’Agence Internationale des Énergies Renouvelables\(^\text{70}\), les énergies renouvelables et l’efficacité énergétique, associées à une électrification plus poussée, peuvent apporter 90% de la réduction des émissions liées aux énergies qui est nécessaire au respect de l’Accord de Paris.

Généralement, ces scénarios envisagent les trois processus parallèles ci-dessous :

- La décarbonisation de l’approvisionnement en électricité.
- L’extension de l’approvisionnement en électricité dans des domaines tels que le chauffage domestique, la climatisation et les transports actuellement alimentés autrement.
- La réduction de la demande finale en énergie.

Une partie considérable de l’investissement supplémentaire se fera dans les pays en développement, où la demande croît plus rapidement que dans les pays développés. Le capital supplémentaire serait partiellement compensé par les coûts d’exploitation moins élevés pour de nombreuses sources d’approvisionnement en énergie à faible émission de gaz à effet de serre (GES).

Pour le gouvernement et les régulateurs, un défi majeur consistera à garantir un prix du carbone qui incite à investir davantage dans les technologies à faible émission de carbone, des investissements soutenus dans la recherche et le développement et un cadre fiscal et réglementaire attrayant.

Au Maroc, un projet de coopération avec la Banque mondiale est en cours d’exécution sur 3 secteurs, les phosphates, l’électricité et le ciment et ce, pour tester la mise en œuvre d’un marché carbone.

2.3.5. Des engagements internationaux de la politique marocaine pour la lutte contre le changement climatique

Le Maroc a accueilli, également, " la 7ème Conférence des Parties (COP7) en 2001 qui a connu l’adoption des modalités et procédures de mise en œuvre du Protocole de Kyoto et la COP22 en 2016, qui a connu l’entrée en vigueur de l’Accord de Paris sur le Climat".
Afin de respecter ses engagements dans le cadre de la "Convention Cadre des Nations unies pour le Changement Climatique", le Maroc a instauré "un dispositif national de gouvernance climatique qui a la charge de coordonner les activités du pays, liées au changement climatique, à l’échelle nationale et internationale". "Un décret permettant la mesure et le monitoring des émissions de GES a été adopté le 21 mars 2019"71.

2.3.6. Le Royaume du Maroc : un territoire fortement exposé aux effets des changements climatiques

- L’exposition à la crise énergétique

Aujourd'hui, le Maroc ne dispose pratiquement d'aucune ressource d’"énergie fossile importante (pétrole, charbon ou gaz). De ce fait, il importe la quasi-totalité de l’énergie qu’il consomme. Les énergies renouvelables ont contribué en 2015 à hauteur de 14% à la production de l’énergie électrique consommée.

Par ailleurs, selon le département de l’énergie, le taux de dépendance énergétique est passé de 98% en 2008 à environ 93% en 2018. Ce qui est encore loin de la moyenne mondiale. La part de l’éolien et du solaire dans la puissance installée est passée de 2% en début 2009 à plus de 13% actuellement.

Pour accélérer la transition énergétique, les pouvoirs publics ont lancé une feuille de route pour la période 2018-2021 qui favorise davantage le mix-énergétique.

En 2030, le Maroc ambitionne de réduire à 82% sa dépendance aux combustibles fossiles importés pour produire de l’électricité et consolider sa sécurité énergétique grâce à l’introduction des énergies renouvelables. Dépendant des fluctuations des prix mondiaux de l'énergie, la facture énergétique est élevée et a atteint, selon l'office des changes, 54,5 milliards de dirhams en 2016 et 70 milliards de dirhams en 2017. Cette facture impacte de manière significative la balance commerciale du Maroc.

Ainsi, le Maroc est exposé à la fois à la variabilité des prix de l’énergie mais aussi aux risques géopolitiques caractéristiques du secteur énergétique.

De plus, le taux d’accroissement de la consommation d’énergie et particulièrement celui de l’électricité demeure relativement élevé (5,1% par an), et ce malgré les initiatives en faveur des énergies renouvelables et de l’efficacité énergétique.

71 Décret n°2-18-74/BO 6667-28 Rajeb 1440 (4-4-2019)
2.4. L’Agriculture face au changement climatique

Les effets du climat sont déterminants sur l’agriculture. Le Maroc, dominé par un climat semi-aride, subit des impacts importants, comme en témoignent les variations drastiques des productions malgré les progrès technologiques réalisés dans la technologie agricole.

L’analyse de la variation des rendements des céréales, qui couvrent tout le territoire national et qui constitue un bon indicateur de l’impact climatique, montre que les effets actuels du climat sont drastiques. La production nationale annuelle en céréales connaît de fortes variations, passant de 18 millions de quintaux en mauvaise année à 110 millions de quintaux en année favorable (Figure 46).

Figure 46: Evolution des productions céréalières (Millions de Quintaux/an)

Les impacts projetés des changements climatiques indiquent des baisses de rendement des céréales et légumineuses variant entre 5 % et 30 % selon la nature des cultures (Figure 47). La hausse des températures et le déclin des précipitations entraînent une diminution des rendements simulés pour la majorité des grandes régions agricoles du Maroc dès le milieu du siècle, à l’exception des zones de montagne.

Direction de l’irrigation et aménagement de l’espace agricole

Les impacts projetés des changements climatiques indiquent des baisses de rendement des céréales et légumineuses variant entre 5 % et 30 % selon la nature des cultures (Figure 47). La hausse des températures et le déclin des précipitations entraînent une diminution des rendements simulés pour la majorité des grandes régions agricoles du Maroc dès le milieu du siècle, à l’exception des zones de montagne.

72 Balaghi et al., 2016 et 2018 ; Gommes et al., 2009
Ces effets affectent les ressources en eau disponibles. En effet, les simulations démontrent une diminution des débits hydriques annuels supérieurs à 30% à l’horizon 2050 selon le scénario RCP8.573.

D’autres études confirment ces tendances et rapportent, pour le milieu du siècle, des baisses de précipitations de 32 à 40 % sur la moitié Nord du Maroc dans le cas du scénario RCP8.574.

Figure 47: Projections de changement de rendements moyens (%) pour les scénarios RCP4.5 et RCP8.5 en 2040-2069 par rapport à la période 1971-2000

Il faut souligner que plusieurs études supposent que les rendements vont être améliorés en zone irriguée. Ces études se basent sur l’hypothèse que les augmentations des émissions enrichissent l’air en CO2 tout en augmentant les températures de croissance, ce qui se traduira par l’amélioration des rendements des cultures en irrigué.

73 Schewe et al., 2013
74 ESCWA et al., 2017
Par ailleurs et à contrario, ces mêmes conditions pourraient réduire les dotations en eau d’irrigation tout en augmentant les besoins en eau des cultures du fait du réchauffement climatique. Les périmètres irrigués risquent de subir des réductions importantes de rendements. Aucun modèle, à notre connaissance, n’a intégré ces paramètres défavorables dans les simulations.

Durant les trois dernières décennies, une tendance à la réduction des apports en eau a été déjà observée. En fait, les allocations en eau aux périmètres irrigués ont été réduites jusqu’à des niveaux qui dépassent 40% des allocations normales. Il faut, donc, s’attendre à une accentuation de ces réductions, avec des conséquences négatives pour la production agricole en irrigué.

2.5. Les écosystèmes naturels et le changement climatique

L’action combinée des éléments du climat et, plus particulièrement les facteurs thermiques et hygrométriques, règle les conditions d’existence, de répartition et de productivité des écosystèmes naturels et de leur biodiversité. Il en résulte que les modifications récurrentes ou permanentes du climat s’accompagneront de modifications de ces conditions et influeront sur tous les indicateurs de stabilité et de productivité des écosystèmes ainsi que sur leur capacité à fournir les biens et services à la société.

Le tableau 9 ci-dessous donne les projections par zone géographique des changements de température et de précipitations pour les principales essences forestières à l’horizon 210075.

Tableau 9: Projections par zone géographique des changements de température et de précipitations pour les principales essences forestières à l’horizon 2100

<table>
<thead>
<tr>
<th>Augmentation de Tmax, et réduction des pluies</th>
<th>Cèdre</th>
<th>Chêne vert</th>
<th>Chêne liège</th>
</tr>
</thead>
<tbody>
<tr>
<td>Région géographique</td>
<td>+T°C</td>
<td>-Pr (%)</td>
<td>+T°C</td>
</tr>
<tr>
<td>Rif</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occidental</td>
<td>+3</td>
<td>-20</td>
<td>+3</td>
</tr>
<tr>
<td>Central</td>
<td>+4</td>
<td>-50</td>
<td>+3</td>
</tr>
<tr>
<td>Moyen Atlas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oriental</td>
<td>+5</td>
<td>-20 à -50</td>
<td>+5</td>
</tr>
<tr>
<td>Central</td>
<td>+5</td>
<td>-50</td>
<td>+5</td>
</tr>
<tr>
<td>Haut Atlas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oriental</td>
<td>+5</td>
<td>-20 à -50</td>
<td>+5</td>
</tr>
<tr>
<td>Anti Atlas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maâmora</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meseta côtière</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plateau central</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

75 Mhirit ey Et-tobi 2009
Dans le cas du chêne vert, par exemple, les réductions projetées (Tableau 9) dans les précipitations appliquées aux valeurs seuils de pluie actuelle (384 - 1462 mm/an) seront de nature à provoquer une contraction de l’aire de distribution du chêne qui serait : i) très importante dans le Rif central, le Moyen Atlas central et certains versants du Haut Atlas oriental puisque la tranche de pluie ne serait plus que de 192-731 mm/an (réduction de 50% des précipitations) et ii) relativement moins grave dans le reste de l’aire d’existence du chêne vert puisque la tranche de pluie projetée varierait entre 345 et 1170 mm/an correspondant à une réduction plus faible de 20% des précipitations. Dans les deux cas de figures, ce sont d’abord les aires marginales de distribution qui subiraient les premiers impacts.

Cependant, dans le cas des fortes réductions (-50%), l’impact du changement climatique affecterait, par contraction, l’aire de distribution du chêne vert même dans les zones actuellement les plus favorables.

Pour le chêne liège qui est une essence réputée plastique sur le plan écologique, les variations projetées de température et de précipitations ne manqueront pas d’affecter certaines portions de son aire de distribution actuelle.

En effet, les seuils de précipitations actuelles (441 – 1709 mm/an) seront réduites à des tranches de : 220 - 854 mm/an dans le Rif central et certaines localités du plateau central et 352 - 1367 mm/an dans le Rif occidental et oriental et dans la Maamora. Les subéraies de montagne et de plaine sont, ainsi, menacées d’une réduction plus ou moins importante de leur contour actuel de répartition et une fragmentation de l’aire est pratiquement certaine dans les deux cas de figures.

Ce raisonnement reste applicable aux autres essences forestières marocaines ; le changement climatique devrait affecter les zones marginales en premier lieu et s’étendre progressivement vers les massifs représentatifs. Le tableau 10, ci-dessous, fournit un bref aperçu sur les modifications attendues dans les quantités de pluie pour quelques essences forestières.
Tableau 10: Projections des changements dans la tranche pluviométrique de certaines essences forestières

<table>
<thead>
<tr>
<th>Essences forestières</th>
<th>Tranche pluviométrique actuelle (mm/an)</th>
<th>Tranche pluviométrique projetée pour 2100 mm/an</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(- 50%)</td>
</tr>
<tr>
<td>Genévrier rouge</td>
<td>186-410</td>
<td>93-205</td>
</tr>
<tr>
<td>Thuya</td>
<td>350-627</td>
<td>175-313</td>
</tr>
<tr>
<td>Oléastre et lentisque</td>
<td>305-1338</td>
<td>152-669</td>
</tr>
<tr>
<td>Jujubier et bétoum</td>
<td>190-409</td>
<td>95-204</td>
</tr>
<tr>
<td>Arganier</td>
<td>212-350</td>
<td>106-175</td>
</tr>
</tbody>
</table>

Source : Mhirit ey Et-tobi, 2009

Ces modifications du climat (précipitation et température) sont, ainsi, de nature à influencer l’aire de répartition, les limites altitudinales, mais aussi la composition et la structure des peuplements en agissant sur la physiologie des arbres et de la végétation associée. Les effets de ce changement engendraient progressivement une réduction de la croissance pouvant conduire à plus ou moins brève échéance à des dépérissements, voire des mortalités progressives et plus ou moins massives pour les écosystèmes forestiers. Le cas du cèdre de l’Atlas est illustratif à cet effet.

Concernant le cèdre de l’Atlas, les modifications attendues (à partir des limites altitudinales inférieures) dans la répartition des massifs varient entre 545 m et 909 m selon la zone géographique (Tableau 11).

Tableau 11: Impact potentiel de l’augmentation de température sur les limites altitudinales du cèdre au Maroc

<table>
<thead>
<tr>
<th>Zone géographique</th>
<th>Altitudes actuelles</th>
<th>Amplitude altitudinale actuelle (m)</th>
<th>Augmentation projetée de température (°C)</th>
<th>Variation altitudinale (m) en 2050 (II)</th>
<th>Limite altitudinale inférieure en 2050</th>
<th>Tranche altitudinale (m) restante en 2050 (I) - (II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rif occidental</td>
<td>1400 à 2300</td>
<td>900</td>
<td>+3</td>
<td>545</td>
<td>1945</td>
<td>355</td>
</tr>
<tr>
<td>Rif central</td>
<td>1500 à 2400</td>
<td>900</td>
<td>+4</td>
<td>727</td>
<td>2227</td>
<td>173</td>
</tr>
<tr>
<td>Rif oriental</td>
<td>1700 à 2200</td>
<td>500</td>
<td>+4</td>
<td>727</td>
<td>2427</td>
<td>Contraction de l’aire et/ou disparition probable du Cèdre</td>
</tr>
<tr>
<td>Moyen Atlas central</td>
<td>1500 à 2000</td>
<td>500</td>
<td>+5</td>
<td>909</td>
<td>2409</td>
<td></td>
</tr>
<tr>
<td>Moyen Atlas oriental</td>
<td>1800 à 2000</td>
<td>200</td>
<td>+5</td>
<td>909</td>
<td>2709</td>
<td></td>
</tr>
<tr>
<td>Haut Atlas oriental</td>
<td>1800 à 2400</td>
<td>600</td>
<td>+5</td>
<td>909</td>
<td>2709</td>
<td></td>
</tr>
</tbody>
</table>

Source : Mhirit ey Et-tobi, 2009

76 Mhirit et Ettobi, 2009

Dans ce contexte, l’essentiel du cèdre de l’Atlas devrait rester concentré dans le Rif entre 1945 et 2300 m d’altitude sur la portion occidentale et entre 2230 à 2400 m dans la partie centrale.

A titre illustratif, les analyses bioclimatiques et dendrochronologiques réalisées dans les forêts de Cèdre de l’Atlas en vue d’apprécier la problématique de déperissement des peuplements ont permis de montrer :

- que la pluviométrie annuelle à Ifrane (Altitude de 1600 m) a enregistré une baisse de 24,2% entre les périodes 1930-1980 et 1981-2006 et la fréquence des années déficitaires en pluie est passée de 59 à 77% entre ces deux périodes,

- une tendance légère à l’augmentation des températures moyennes, minimales et maximales de l’ordre de 0,5°C pour la période 1981-2006,

- une tendance à la baisse des précipitations neigeuses relativement plus marquée que celle de la pluviométrie durant la période 1958-2006.

Dans ces conditions, l’évolution de la croissance du cèdre durant la période 1940-2006 (Figure 48) a mis en relief l’impact des modifications climatiques, qui s’est traduit par une perte de vigueur du cèdre de l’ordre de 30%. Cette perte de vigueur, mesurée sur le cerne moyen, est passée de 2,01 mm pour la période 1940-2006, à 1,40 mm pour la période 1976 – 2006.

77 Mokrim, 2008, Mhirit, et al., 2008
78 Mhirit et. Al. 2008
En conclusion, les impacts du changement climatique sur les écosystèmes naturels, au Maroc, varieront selon les régions et dépendront de plusieurs facteurs, notamment la composition des espèces, les conditions du milieu et le microclimat local.

Il est probable que le réchauffement accompagné d’une baisse en contenu d’eau du sol augmente la fréquence des feux de forêt et le dépérissement des peuplements entraînant, de surcroît, de rapides changements structuraux des écosystèmes qui risquent d’altérer leur rôle de régulation du cycle de l’eau.
Partie 3 : Analyse des interactions et coherences entre les secteurs du "NEXUS "
1. Politiques et stratégies sectorielles du NEXUS

Le secteur de l’eau au Maroc a bénéficié d’un intérêt particulier des pouvoirs publics et a été au centre des préoccupations des politiques économiques en raison de son rôle déterminant dans la sécurité hydrique du pays et l’accompagnement de son développement, notamment l’agriculture irriguée.

Dans ce cadre, le Maroc a engagé depuis longtemps une politique dynamique pour doter le pays d’une importante infrastructure hydraulique, améliorer l’accès à l’eau potable, satisfaire les besoins des industries et du tourisme et le développement de l’irrigation à grande échelle.*

1.1. Politique et stratégie nationale de l’Eau du Maroc

Pour consolider les acquis et relever les défis susmentionnés, une nouvelle impulsion visant le renforcement de la politique de l’eau a été amorcée et présentée dans le cadre de la stratégie de l’eau présentée à Sa Majesté Le Roi Mohammed VI le 14 avril 2009 à Fès. Ses grands axes stratégiques sont rappelés ci-dessous.

1.1.1. Axes stratégiques de la stratégie nationale de l’eau

- **Axe stratégique 1 : Gestion de la demande en eau et la valorisation de l’eau**
 - Dans le domaine agricole : le potentiel d’Economie d’Eau en Irrigation est évalué à 2,4 milliards de m3/an moyennent :
 - la reconversion à l’irrigation localisée : potentiel de 2 milliards m3/an avec un rythme de conversion de 40 000 ha/an ;
 - l’amélioration des rendements des réseaux d’adductions vers les périmètres irrigués : potentiel de 400 millions de m3/an ;
 - l’adoption d’une tarification basée sur un comptage volumétrique ;
 - la sensibilisation et l’encadrement des agriculteurs pour les techniques d’économies d’eau.

Pour une meilleure valorisation des ressources en eau mobilisées, la résorption du retard d’équipement hydro agricole des superficies dominées par les barrages est primordiale, ainsi 108 000 hectares sont programmés.

* source : METLE
Dans le domaine d'eau potable, industrielle et touristique : un potentiel d'économie d'eau de 120 Mm3/an est évalué à travers les actions suivantes :

✓ Amélioration du rendement des réseaux : 80% comme moyenne nationale ;
✓ Incitation au recours aux technologies appropriées d'économies d'eau : conduites, équipement de sanitaire, ...
✓ Révision du système tarifaire : une tarification qui incite à une utilisation plus rationnelle de l'eau potable et un meilleur recouvrement des coûts ;
✓ Amélioration de l'efficience de l'utilisation de l'eau en industrie et les unités touristiques et incitation au recyclage de l'eau ;
✓ Prise en compte des meilleures pratiques d'économie d'eau dans les normes de construction.

- Axe stratégique 2 : Gestion et développement de l'offre

Les grands efforts de mobilisation des ressources en eau seront poursuivis par la mobilisation de nouvelles ressources en eau à grande échelle à travers les actions suivantes :

✓ Poursuite de la réalisation des grands barrages (une trentaine à l'horizon 2030) ;
✓ Transfert Nord-Sud entre les bassins excédentaires (du Nord et du Sebou) et déficitaires (Oum Er Rbia et Tensift) ;
✓ Poursuite du programme de réalisation des petits et moyens barrages ;
✓ Renforcement de l'entretien des infrastructures hydrauliques existantes et l'interconnexion des systèmes hydrauliques ;
✓ Généralisation de l'accès à l'eau potable dans le milieu rural ;
✓ Développement de la mobilisation des ressources non conventionnelles : dessalement d'eau de mer, déminéralisation des eaux saumâtres, collecte des eaux pluviales, réutilisation des eaux usées épurées (300 Mm3/an) pour l'arrosage des golfs et des espaces verts.
Axe stratégique 3 : Préservation et la protection des ressources en eau, du milieu naturel et des zones fragiles

Cet axe est basé sur les programmes suivants :

✓ Protection de la qualité des ressources en eau et lutte contre la pollution :

- Accélération du rythme de mise en œuvre du programme national d’assainissement et d’épuration des eaux usées.
- Programme National d’Assainissement Rural.
- Programme National de Prévention et de lutte contre la Pollution Industrielle.
- Plan national de gestion des déchets ménagers et assimilés.
- Lutte contre les effets dévastateurs des inondations (de plus en plus fréquentes), à travers notamment le Plan National de Protection Contre les Inondations (PNPCI).

✓ Sauvegarde et reconstitution des nappes :

- Renforcement du système de contrôle et de sanction.
- Limitation des pompages dans les nappes.
- Renforcement de la responsabilité des Agences des Bassins Hydrauliques (ABH) dans la gestion des nappes et généralisation des contrats des nappes.
- Recours systématique aux ressources en eau de substitution conventionnelles et non conventionnelles pour soulaguer la pression sur les eaux souterraines.
- Renforcement de la recharge artificielle des nappes.
- Réinjection des eaux usées après traitement dans les nappes côtières utilisées pour l’irrigation.
- Substitution des volumes prélevés dans les nappes par l’Office National de l’Électricité et de l’Eau Potable (ONEE) et les régies par les eaux de surface.

✓ Sauvegarde des bassins versants, oasis, et zones humides :

La sauvegarde de ces zones vulnérables et d’intérêt écologique inestimable se fera à partir des programmes suivants :

- Protection des bassins versants à l’amont des barrages contre l’érosion.
- Programme de sauvegarde des sources.
- Programme de protection des zones humides et lacs naturels.
- Préservation des oasis et lutte contre la désertification.
- Protection du littoral.
• Limitation et contrôle des pompages dans les nappes affectant directement les lacs naturels.
• Amélioration de l'alimentation des lacs par déviation des cours d'eau et aménagement des seuils et petits barrages en amont" 80.

1.1.2. Grandes réalisations du Maroc dans le secteur de l'eau

"Les réalisations du Maroc dans le domaine de l'eau sont nombreuses, dont les principales sont citées ci-dessous :

• Institutionnalisation de la Planification et de la Gestion Intégrée des Ressources en Eau, à travers :

 ✔ L'institutionnalisation du Conseil Supérieur de l’Eau et du Climat (CSEC).
 ✔ l’institutionnalisation de la gestion intégrée, décentralisée et concertée des ressources en eau, avec la création de dix agences de bassins hydrauliques (ABH).
 ✔ la planification intégrée des ressources en eau.
 ✔ l’élaboration du Plan National de l’Eau (PNE), en cours de finalisation.
 ✔ l’élaboration des Plans Directeurs d’Aménagement Intégré des Ressources en Eau (PDAIREs).

• Grand effort de mobilisation des ressources en eau conventionnelles

 Le Maroc a réussi à assurer la quasi généralisation de l’accès à l’eau potable (100% en milieu urbain et plus de 94% en milieu rural), l’irrigation d’une superficie de 1,6 millions d’hectares et la satisfaction des besoins en eau industrielle. D’autres réalisations ont également été enregistrées. Il y a lieu de citer, notamment :

 ✔ 140 grands barrages réalisés, totalisant une capacité de stockage dépassant 17,5 Milliards de m3 (Figure 49).
 ✔ Une trentaine de grands barrages sont programmées à l’horizon 2030, avec une capacité de stockage additionnelle de 2,6 Milliards m3.
 ✔ Réalisation de 13 systèmes de transfert d’eau superficielle.

80 MEMEE. Projet de Plan National de l’Eau du Maroc, 2015
• Quasi-généralisation de l’accès à l’eau potable

✓ En milieu urbain : Taux de desserte de 100%, avec 94% comme taux de branchement au réseau de distribution.
✓ Eau potable rurale : Taux d’accès qui est passé de 14% en 1994 à plus de 95% actuellement (Figure 50).

Figure 49: Evolution du nombre et de la capacité de stockage des grands barrages du Maroc

Figure 50: Evolution du taux de branchement et de desserte en eau potable en milieux urbain et rural
• Développement du dessalement de l’eau de mer
 ✓ Capacité actuelle de production : environ 30.000 m3/j pour l’alimentation en eau potable (AEP) des villes de Laâyoune, de Boujdour et d’Akhfennir ;
 ✓ De nouvelles stations de dessalement sont programmées pour l’alimentation en eau potable des villes d’Agadir (100.000 m3/j), de Sidi Ifni et de Tantan (10.000 m3/j).

• Développement de l’assainissement liquide et de l’épuration des eaux usées en milieux urbain et rural (Plan National d’Assainissement)

• Satisfaction des besoins en eau agricoles : Irrigation de 1,6 millions d’hectares, dont les deux tiers sont équipés par les pouvoirs publics.

• Développement de l’énergie hydroélectrique : puissance totale installée de l’ordre de 1.730 MW, ce qui a permis d’assurer jusqu’à 10% de la production totale d’électricité du pays (Figure 51).

Figure 51: Historique de la production hydroélectrique annuelle (GWH)

![Graphique de la production hydroélectrique annuelle](image)

Source : Département de l’eau, 2020
• Protection contre les inondations : élaboration et mise en œuvre du Plan National de Lutte Contre les Inondations (PNLCI)81 (Figure 52).

Figure 52: Inventaire des sites inondables dans le Plan National de Protection Contre les Inondations (PNI-2017)

Cette figure illustre l'inventaire des sites inondables dans le Plan National de Protection Contre les Inondations (PNI-2017).

1.1.3. Programme d’urgence d’alimentation en eau potable de la période 2020-2027

81 CESE, 2014. La gouvernance par la gestion intégrée des ressources en eau au Maroc : Levier fondamental de développement durable (avec la contribution de Mohamed Sinan)
Cette convention définit les conditions et modalités d’exécution et de financement de ce programme qui vise la consolidation et la diversification des sources d’approvisionnement en eau potable, l’accompagnement de la demande pour cette source inestimable, la garantie de la sécurité hydrique et la lutte contre les effets des changements climatiques.

Cet important programme intégré, élaboré conformément aux Hautes Orientations Royales et en considération de la situation hydrique du Royaume et des études sur cette problématique, s’articule autour de cinq principaux axes :

- **Axe 1** : Amélioration de l’offre hydrique notamment par la construction de 20 nouveaux grands barrages, d’une capacité globale de stockage de 5,38 milliards de m³, de 909 petits barrages et de barrages collinaires, par l’exploration des eaux souterraines et par la réalisation de nouvelles stations de dessalement d’eau de mer, qui viendront s’ajouter à celles déjà opérationnelles à Laâyoune, Boujdour, Tan-Tan et Akhfenir : investissement prévu de 61 milliards de dirhams ;

- **Axe 2** : Gestion de la demande et valorisation de l’eau, notamment dans le secteur agricole : investissement prévu de 25,1 milliards de dirhams. Le volet relatif à l’irrigation concerne une superficie globale de 510.000 hectares et bénéficiera à 160.000 agriculteurs.

Ce programme porte, également, sur :

- la poursuite de la réalisation du programme national d’économie d’eau d’irrigation qui devra mobiliser une enveloppe budgétaire de près de 9,5 milliards de dirhams. Il vise la conversion des systèmes d’irrigation traditionnels en systèmes d’irrigation goutte-à-goutte (100.000 agriculteurs bénéficiaires) ;

- l’amélioration du rendement des réseaux de distribution d’eau potable dans les villes et centres urbains à hauteur de 78% à l’horizon 2027, avec une économie de près de 207 millions de m³ d’eau par an, l’optimisation des investissements relatifs aux infrastructures hydriques, la garantie de la poursuite de l’approvisionnement en eau potable et l’amélioration de la qualité des services.

- **Axe 3** : Renforcement de l’approvisionnement en eau potable en milieu rural : investissement prévu de 26,9 milliards de dirhams. Ceci à travers la généralisation des raccordements individuels à 659 centres ruraux (5 milliards de dirhams) et la généralisation de l’approvisionnement en eau potable de tous les douars du Royaume (7.876 douars concernés) (9,68 milliards de dirhams).
Axe 4 : Réutilisation des eaux usées traitées dans l’arrosage des espaces verts : investissement prévu de 2,3 milliards de dirhams.

✓ Adoption d’un programme national intégré d’assainissement liquide en milieux urbain et rural et réutilisation des eaux usées traitées. Il a pour objectifs la poursuite de la réalisation de projets d’assainissement liquide au profit de 128 villes et centres urbains et l’équipement de 1.207 centres ruraux en réseau d’assainissement, ainsi que la réutilisation des eaux usées traitées dans l’irrigation d’espaces verts.

✓ La première tranche dudit programme (2020-2027) permettra la mobilisation de 100 millions de m³/an à l’horizon 2027 et ce, à travers la réalisation de 87 projets, dont 22 pour l’arrosage des terrains de golf.

Axe 5 : Communication et sensibilisation en vue de renforcer la conscience liée à l’importance de la préservation des ressources en eau et la rationalisation de son utilisation : budget de 50 millions de dirhams.

Le financement de ce programme sera assuré à hauteur de 60% par le Budget général de l’Etat, 39 % par les acteurs concernés et le reste dans le cadre du partenariat public-privé 82.

1.1.4. Insuffisances de la politique du secteur de l’eau

Malgré tous les succès enregistrés par la politique de l’eau au Maroc, plusieurs contraintes et défis importants restent à surmonter, notamment :

- la lutte contre la surexploitation des nappes (les baisses des niveaux des nappes enregistrées dépassent parfois 3 m/an : cas de la nappe profonde de Fès-Meknès)
- la pollution des ressources en eau superficielles et souterraines.
- l’envasement des barrages,
- les fuites dans les réseaux d’eau potable et les canaux d’irrigation,
- la valorisation de l’eau d’irrigation,
- le développement des ressources en eau non conventionnelles,
- le développement de l’hydro-électricité,
- l’instauration effective, sur le terrain, des périmètres de protection des captages d’eau potable,

82 Communiqué du Cabinet Royal du 13 janvier 2020
le développement du partenariat public-privé,
le développement de la recherche scientifique et de l’expertise,
le renforcement de l’éducation et la sensibilisation à la rareté des ressources en eau, à leur raréfaction et à leur vulnérabilité à la pollution.

1.2. Le secteur de l’énergie: une volonté affichée sur la voie de l’économie verte et de la transition énergétique

"Le NEXUS Energie-Eau-Agriculture-Ecosystèmes" est analysé selon les effets du changement climatique. Les efforts de lutte contre le changement climatique, comme le définit la “Convention Cadre des Nations unies contre le changement Climatique (CCNUCC)” et les rapports respectifs des experts, s’articulent autour de deux domaines complémentaires :

- "l’atténuation", qui regroupe l’ensemble des stratégies et politiques qui agissent sur les causes du changement climatique, en réduisant les émissions de gaz à effet de serre (GES) dans l’atmosphère ;
- l’adaptation, qui regroupe les stratégies et politiques qui agissent sur les conséquences du changement climatique et encadre l’accommodation des écosystèmes avec les nouvelles conditions climatiques subies"83.

1.2.1. Stratégie énergétique nationale et objectifs politiques

En 2009, le Maroc a adopté "une stratégie énergétique nationale" en tant que feuille de route pour "la transition vers un système énergétique décarboné", conciliant le développement économique et les objectifs sociaux et environnementaux.

La stratégie énergétique nationale est basée sur quatre objectifs fondamentaux qui se déclinent en cinq axes prioritaires (Figure 53) et porte sur le développement d’un bouquet énergétique diversifié et optimisé (Encadré 6).

La mobilisation des ressources nationales, y compris l’utilisation des énergies renouvelables, notamment l’éolien et le solaire, fait de l’efficacité énergétique une priorité nationale. Elle renforce la coopération régionale avec les marchés énergétiques européen et africain et vise l’intégration industrielle pour favoriser le développement des capacités industrielles locales à tous les niveaux de la chaîne de valeur des technologies vertes.

83.unfccc.int
1.2.2. Vision 2020 et 2030 sur les énergies renouvelables

La stratégie énergétique marocaine "projette d’atteindre une capacité électrique installée de 10.100 MW à l’horizon 2030". Pour répondre aux objectifs fixés par le Maroc en termes d’augmentation de la "capacité des énergies renouvelables", le pays devrait renforcer et dynamiser ce cadre à travers un ensemble de mesures réglementaires, législatives et opérationnelles afin accélérer la transition écologique.

Encadré 6. Les objectifs en matière d’énergies renouvelables sont devenus plus ambitieux

- "Un objectif de 42% en 2020, rehaussé à au moins 52% de la capacité installée à partir de sources renouvelables à l’horizon 2030 ;
- Des économies d’énergie de 5% à l’horizon 2020 envisagées de 15 à 20% à l’horizon 2030, notamment grâce à la mise en œuvre d’un nouveau plan d’efficacité énergétique dans l’ensemble de l’économie, notamment dans les secteurs du bâtiment, l’industrie, les transports et l’agriculture. L’Agence Marocaine pour l’Efficacité Energétique, AMEE, a identifié un potentiel d’économie d’énergie de 25% d’ici 2030.
- Un investissement important est en cours de déploiement dans le domaine de la recherche, du développement et de l’innovation en matière de technologies énergétiques (IRESEN entre autres)
- Le gaz naturel est considéré à présent comme un élément important du futur mix énergétique et son objectif est d’accroître sa part grâce à l’installation de 2 installations de 400 MW supplémentaires de technologie à cycle combiné d’ici 2030.
- La réalisation de nouvelles stations de transfert d’énergie par pompage (STEP) en plus de celles de 460 MW à Afourer et d’Abdelmoumen de 350 MW dans la région d’Agadir, dont la mise en service est prévue en 2020. Et celles d’El Menzel II (Sebou) et Ifahsa (Chefchaouen) de 300 MW chacune, porteront ainsi à 4 le nombre de STEP au Maroc d’ici 2030”.

Figure 53: Fondements et axes stratégiques de la politique énergétique du Maroc

- Filière photovoltaïque Basse Tension : un grand défi à relever.

La loi 58-09, qui a pour finalités de pallier les insuffisances de la loi 13-09 et en faciliter l’application, devrait permettre d’accompagner le développement du secteur des énergies renouvelables (ER), de l’adapter aux évolutions technologiques futures et de donner un puissant coup d’accélérateur aux initiatives privées.

Cependant la possibilité donnée aux producteurs d’électricité, à partir de sources d’énergie renouvelable, d’accéder aux réseaux électriques urbains et ruraux de basse tension souffre toujours de l’absence des textes d’application.

Le cadre règlementaire est en cours de mise en place et l’impulsion politique est déjà très présente. Cependant, le pas de la réalisation concrète n’est pas encore franchi. La mise en œuvre va dépendre, d’une part, de la réponse de la filière et, d’autre part, de la réaction des institutions financières.

L’élaboration d’un décret pour permettre l’injection de l’électricité à base d’énergie renouvelable dans le réseau de basse tension permettrait, d’une part, de donner un nouveau souffle au marché du solaire photovoltaïque et, d’autre part, de créer des milliers d’emplois.
Cette action devrait être programmée dans l’immédiat, compte tenu des impacts positifs qu’elle pourrait engendrer au niveau de l’intégration industrielle, en matière de création de nouveaux emplois (réparation, entretien, maintenance...), de réduction de la dépendance énergétique du pays et surtout d’allègement des finances de l’Etat par la mobilisation des financements propres des auto-producteurs.

1.2.3. La filière solaire thermique : un fort potentiel de développement

"Face aux poids des subventions et au fardeau croissant sur le budget public, le gouvernement a pris la décision stratégique en septembre 2013 d’abandonner progressivement les subventions des carburants et des combustibles fossiles à l’exception du gaz butane (destiné à l’usage domestique), qui est resté fortement subventionné.

Cette forte subvention du gaz butane a eu comme conséquence, d’une part, le non recours des ménages au solaire thermique pour la production d’eau chaude sanitaire (le temps de retour du coût d’une installation solaire dépasse souvent 10 à 14 ans) et, d’autre part, le déploiement d’autres usages prohibés que ceux initialement ciblés par les autorités publiques.

En particulier, compte tenu des écarts importants entre les prix du butane et du gasoil, une prédisposition à un développement, de plus en plus important, de l’usage illégal du butane pour l’irrigation est constatée dans le secteur de l’agriculture et ce dans toutes les régions du Maroc84.

La révision à la baisse du tarif de la Taxe sur la Valeur Ajoutée (TVA), appliquée aux chauffe-eaux solaires de 14% à 10%, avait pour objectif de réduire le recours aux équipements fonctionnant à l’électricité ou au gaz de butane, qui pèsent lourdement sur la facture énergétique. Cependant, cette baisse de TVA n’a pas eu d’impact révélateur sur les ventes des chauffe-eaux solaires au Maroc. D’autres encouragements devraient être consenties par le gouvernement, telles qu’une suppression complète de la TVA et/ou une subvention, ou, du moins, un crédit bonifié pour l’achat de ces appareils.

Rendre obligatoire l’installation des chauffe-eau solaires thermiques à moyen terme (2021-2025) dans les logements neufs à usage d’habitation : ceci constituerait un grand élan vers la réduction des émissions de GES et permettrait de créer des milliers d’emplois au niveau de toute la chaîne de valeur du solaire thermique.

1.2.4. Développement durable du Maroc

Conformément aux "objectifs de développement durable (ODD)" des Nations unies, et notamment l'objectif (N°7) de garantir l'accès de tous à une énergie abordable, fiable, durable et moderne pour tous, le Maroc a progressé dans l'accès à l'électricité et à la cuisson propre (ODD 7.1), au développement des énergies renouvelables (ODD 7.2) et de l'efficacité énergétique (ODD 7.3).

Le Maroc a réalisé des progrès impressionnants en matière d'électrification rurale. En 2018, selon l'ONEE, le taux d'électrification rurale atteignait 99,43%, contre seulement 16% en 1995. Dans le cadre du programme national d'électrification rurale globale (PERG), le Maroc a réussi à moderniser le système électrique existant. Le défi consiste maintenant à moderniser le système actuel pour stimuler davantage les activités économiques et améliorer la qualité de vie des citoyens en zones rurales et montagneuses, souvent isolées.

En 2016, le Maroc a utilisé une part de 7,2% des énergies renouvelables dans la consommation finale totale (CFT), bien au-dessus de la consommation régionale moyenne en Afrique du Nord (4,5%) et proche des tendances mondiales (10%)85. Face à l'augmentation de la demande en énergie, la pénétration des énergies renouvelables dans des secteurs autres que la production d'électricité (chauffage et transports), pourrait accroître la part des énergies renouvelables dans l'ensemble des secteurs d'activités socio-économiques.

Ainsi, le Maroc a encore un potentiel inexploité pour renforcer le rôle des sources d'énergie renouvelable par le biais d'un couplage sectoriel, y compris l'électrification accrue des transports et des utilisations finales.

Le Maroc souhaite favoriser l'intégration de parts croissantes de systèmes photovoltaïques et éoliens dans le système électrique national. La garantie de la disponibilité d'une puissance de production suffisante, pour répondre à ses besoins énergétiques, à travers les importations, ainsi que la gestion de la demande est un principe fondamental. Renforcer les réseaux électriques et assouplir les contrats actuels des centrales thermiques pourrait renforcer la flexibilité du système électrique national.

L'intégration de parts plus importantes d'électricité renouvelable crée, également, des opportunités d'utilisation accrue de l'électricité dans d'autres secteurs essentiels, tels que les transports, les bâtiments et l'agriculture, notamment en ce qui concerne le développement de l’eau et la gestion de l’irrigation.

85 Chiffres de l’Agence Internationale de l’Energie
L'utilisation des énergies renouvelables dans les secteurs autres que celui de la production de l'électricité se développe au Maroc. C'est le cas du développement des pompes solaires dans le secteur agricole et du dessalement de l'eau de mer avec utilisation des technologies du solaire photovoltaïque et du solaire thermique, qui est en cours dans la région de Souss.

1.2.5. Réforme des subventions

Pendant la période 2013-2015, le gouvernement a déployé des efforts considérables pour éliminer progressivement les subventions aux combustibles fossiles.

Depuis décembre 2015, les prix de la plupart des produits raffinés sont libres et suivent les cours internationaux. Le gaz butane, largement utilisé par les ménages, l'agriculture et l'industrie est par contre subventionné. Une bouteille de 12 kg de gaz butane est vendue au prix de 40 dirhams en 2018\(^{86}\), alors que le prix du marché serait de 96,64 dirhams.

En 2017, "le montant de la subvention des produits énergétiques s'élevait à 9,9 milliards de dirhams, contre 7,1 milliards de dirhams en 2016\(^{87}\), ce qui a pesé lourd sur le budget national.

Le gouvernement a l'intention de réformer ce système de subvention et de le limiter aux seuls ménages à faible revenu. Cependant, la réforme de la subvention sur le gaz butane s'est avérée difficile à réaliser en raison de ses nombreuses ramifications sociales et politiques. Le gouvernement s'inquiète, également, d'une possible augmentation de la déforestation au cas où les consommateurs passent du butane au bois pour leurs activités de cuisson.

La suppression de la subvention du gaz butane est d'ores et déjà inscrite dans le programme du gouvernement mais risque de connaître des blocages tant que les prérequis ne sont pas réalisés, à savoir "un registre social unique (RSU)" qui permettra au gouvernement de cibler en matière d'aide sociale.

Les tarifs de l'électricité ont augmenté depuis 2014 mais restent encore en dessous des coûts de production pour certains groupes de consommateurs. Les ménages paient entre 0,9 et 1,44 dirhams par kWh selon la tranche de consommation mensuelle en électricité (système de tarification sociale). Après la fusion des offices des branches de l'eau et de l'électricité en un seul et unique office (ONEEE) en 2011, un subventionnement croisé considérable entre l'eau et l'électricité a été mis en place.

\(^{86}\) Source : Caisse de Compensation, 2018
\(^{87}\) Données du Ministère de l'économie et des finances
1.3. L’Agriculture : économie et valorisation de l’eau d’irrigation

Au niveau national, l’agriculture reste le secteur le plus en retard comparé aux autres secteurs économiques et elle connaît depuis longtemps des défis structurels majeurs du fait :

- des freins importants engendrés par des structures foncières ancestrales qui retardent le changement,
- de la dominance de la petite propriété vivrière (plus de 85% des exploitations agricoles ont moins de 2 hectares),
- du vieillissement et de l’analphabétisme de la population rurale (76% des agriculteurs dépassent 65 ans et le taux de l’analphabétisme varie entre 45% et 85% selon les régions et le genre),
- des difficultés d’accès aux marchés, à l’éducation, à la santé et aux services publics,
- de la vulnérabilité de la population rurale (généralement pauvre) face au climat semi-aride et aride et aux conséquences néfastes des changements climatiques.

C’est la raison pour laquelle les politiques et les réformes se sont succédé, avec plus ou moins de réussite, pour tenter de lever ces défis. Dans les années 1960, une courageuse initiative fut opérée par la création de l’Office National des Irrigations (ONI), qui constitue le point de départ de la politique d’intervention de l’État dans le secteur agricole irrigué.

En 1995, le gouvernement du Maroc a poursuivi les réformes institutionnelles par la création des Agences de Bassins Hydrauliques, chargées d’assurer une gestion intégrée et concertée des ressources en eau au niveau de chaque bassin hydraulique (loi 10-95).

Dans le secteur agricole, la mise en œuvre de nouveaux instruments juridiques et institutionnels, visant à promouvoir une gestion participative des ressources en eau au niveau local, constitue une des composantes les plus importantes des nouvelles politiques du Maroc. La loi a permis la création et le développement des “Associations d’Usagers d’Eau Agricole (AUEA)".
Ces associations complètent le dispositif institutionnel et s’impliquent directement dans la gestion participative des périmètres d’irrigation. Elles constituent des acteurs incontournables dans le secteur de l’irrigation et une interface importante dans les périmètres modernes entre les Offices Régionaux de Mise en Valeur Agricole et les agriculteurs usagers de l’eau.

"Elles n’ont pas encore été investies, cependant, de pouvoirs suffisants à la hauteur des ambitions fixées. La réforme de leur statut et l’élargissement de leurs champs d’action permettront de les renforcer et de les mettre au niveau des objectifs actuels."88

Par ailleurs, il est important de souligner que, depuis le lancement du Plan Maroc Vert (PMV) en 2008, le département de l’Agriculture a fait évoluer les institutions du Ministère, ainsi que le cadre juridique et réglementaire pour répondre à sa stratégie nationale de faire de l’irrigation un atout pour le développement agricole.

L’action des Offices Régionaux de Mise en Valeur Agricole est, également, soutenue par des instituts de formation agricole et de recherche agronomique (l’Institut Agronomique et Vétérinaire Hassan II, l’Ecole Nationale d’Agriculture (ENA) de Meknès, l’École Nationale Forestière des Ingénieurs et l’Institut National de Recherche Agronomique), des instituts de formation des techniciens agricoles et le Conseil Agricole (Office National de Conseil Agricole (ONCA)).

Ce dispositif est la pièce maîtresse des réussites observées. Le défi de la mise en œuvre de la gouvernance de l’eau dans le domaine agricole constitue un agenda permanent qui nécessite d’être continuellement amélioré et mis à jour.

Les outils, les institutions et les règlements existent -certains nécessitent d’être réadaptés au contexte actuel-, mais c’est la volonté, la célérité d’agir, l’application de la loi et la rigueur dans la mise en œuvre de la gouvernance qui nécessitent un réveil collectif.

A terme, il est capital de changer les paradigmes d’intervention et d’action dans ce secteur capital sur les plans économique et social. La réduction des décalages sociaux, éducatifs et culturels entre le monde urbain et rural devient impérative.

Les politiques, les institutions, les modes de gouvernance et de gestion devraient être plus réactifs et plus innovants pour faire face aux grands défis du secteur de l’agriculture, fortement dépendant du climat et fortement vulnérable aux conséquences négatives du changement climatique.

1.4. Les écosystèmes naturels: une vision intégrée et territorialisée inscrite dans la durabilité

1.4.1. Refondation pour une nouvelle gouvernance du secteur

La dernière décennie du siècle dernier est marquée par "la mondialisation des questions forestières, depuis le Sommet de Rio (CNUED, 1992) et les processus qui les ont suivies". Elle a permis l’émergence d’une nouvelle vision de la forêt en termes de gestion, de conservation et d’exploitation écologiquement viable des forêts.

L’ensemble de ces études, a été mis en cohérence et synthétisé pour l’élaboration du Programme Forestier National (PFN), en conformité avec l’Agenda 21 de la CNUED et avec l’esprit de la Déclaration de politique générale du Gouvernement (1998). Le Programme Forestier National se situe dans le cadre d’une stratégie à moyen et long terme, qui inscrit les actions forestières dans la durée (nécessaire à leur efficacité) et qui constitue une réponse supranationale aux problèmes de la dégradation des surfaces boisées dans la région méditerranéenne“.

L’ensemble de ces stratégies est soutenu par des leviers en rapport avec l’adaptation du cadre institutionnel, législatif et réglementaire.

"Le Programme Forestier National", actualisé en 2005 et opérationnalisé à travers le "Programme Décennal Territorialisé" (PDT, 2005-2014), est décliné en programmes triennaux permettant d’adapter le rythme d’exécution aux contraintes des ressources humaines et financières et à la capacité des entreprises forestières. Fort de ces résultats, le "Programme Décennal Territorialisé" est reconduit pour la période 2015-2024.

89 Programme Forestier National. (Vol I à IV). Ministère Chargé des Eaux et forêt Rabat (Maroc).
80 Mhitit, 2017

Le département des forêts a développé, dès 2000, plusieurs actions et mesures, en rapport direct avec le "NEXUS", dont les plus importantes concernent la conservation des sols et l’aménagement des bassins versants, la conservation, la gestion et la valorisation des aires protégées, le reboisement et la reconstitution des écosystèmes forestiers et la conservation et l’utilisation rationnelle des zones humides.

1.4.2. Conservation des sols et aménagement des bassins versants

"L’importance accordée par le Maroc à la mobilisation des ressources en eau est reflétée par l’ambitieux programme de construction de grands barrages (140 ouvrages à ce jour). Les bassins versants en amont de ces barrages couvrent une superficie totale de plus de 20 millions d’hectares, dont plus de 50 % présentent des risques importants d’érosion"32.

Dans le cadre du "Programme National d’Aménagement des Bassins Versants", adopté en 1996, le département des forêts a entrepris "un vaste programme (Figure 54), appuyé par une série d’expériences innovantes dans les montages institutionnels et financiers, les approches de mise en œuvre et de partenariat de quelques projets d’aménagement intégré des bassins versants (Sidi Driss, Lakhdar, Msoun, ...).

L’approche retenue consiste en des programmes d’aménagements concertés qui visent la maîtrise de l’érosion hydrique, tout en incorporant des mesures d’amélioration ou de diversification des moyens de subsistance et des revenus des populations (reconstitution des ressources forestières, conservation de la fertilité des sols, amélioration de l’infiltration et des services offerts par les écosystèmes agro-sylvopastoraux, renforcement des infrastructures socio-économiques de base et promotion d’activités génératrices de revenus).

"Ce programme s’est traduit, durant le "Programme Décennal Territorialisé 2005-2014", par la mise en œuvre de 86 projets intégrés dans 18 bassins versants prioritaires répartis dans 40 provinces, la fixation de 39 000 hectares de dunes dans 18 provinces et la création de 7 ceintures vertes dans les provinces du Sud"33.

31 Programme décennal des eaux et forêts et de la lutte contre la désertification 2015 -2024 : Programmes régionaux. HCEF LCD, Rabat, Maroc
33 Idem
Les principaux acquis de ces programmes, en rapport avec les problématiques de l’eau et de l’adaptation au changement climatique, concernent principalement :

- l’amélioration de la recharge naturelle des nappes d’eau souterraines,
- la réduction de l’envasement des barrages,
- l’atténuation des crues et la prévention contre les inondations en aval,
- la protection des principales villes côtières et des infrastructures dans les zones Sud du pays,
- l’amélioration de la fertilité du sol en amont.

Figure 54: Surface couverte par les plans d’aménagement

![Surface couverte par les plans d’aménagement](image)

Source : HCEFLCD, 2018

1.4.3. Conservation, gestion et valorisation des aires protégées

°⁴ Anon, 1996.
La figure 55, ci-dessous, présente l’état actuel du réseau d’aires protégées à la fin du Programme Décennal Territorialisé (2014) et met en relief l’importance de l’effort consenti durant la période de ce programme en matière de conservation et de valorisation de la biodiversité et des ressources génétiques.

Ainsi, le Maroc dispose d’un réseau de 154 Sites d’Intérêts Biologique et Ecologique (SIBE) couvrant une superficie totale de 2,5 millions d’hectares. Les aires protégées couvrent 9% de la superficie des écosystèmes naturels (Objectifs d’Aichi (CDB) : 17% à l’horizon 2020). Les principaux acquis de ces programmes concernent principalement :

- l’amélioration de la gestion, la conservation et l’utilisation des écosystèmes et de leur biodiversité,
- l’implication des populations locales à la cogestion des ressources naturelles,
- la révision de la loi sur la chasse et l’adoption systématique de plans de chasse,
- l’émergence d’ONG locales dynamiques en matière de protection de la biodiversité et de groupement pour la valorisation des ressources génétiques forestières (RGF) (Exemple de l’Arganier),
- la promotion de l’investissement privé,
- le renforcement de la capacité du personnel en matière de gestion des aires protégées.
Figure 55: Carte de l’état actuel du réseau d’aires protégées au Maroc

Un réseau de 154 SIBE dont 10 PN sur une superficie de 2,5 millions ha couvrant 9% de la superficie des écosystèmes naturels (Objectifs de la CDB/Aichi : 17% à l’horizon 2020

1.4.4. Reboisement et reconstitution des écosystèmes forestiers

Ce programme a pour objectif principal de reconstituer et de restaurer les écosystèmes naturels. De ce fait, il contribue directement au renforcement de la lutte contre l’érosion hydrique et éolienne, à l’amélioration du taux de couvert végétal, à la production du bois, notamment en zones favorables, à la production fourragère en zone de forte pression pastorale, à la contribution au rétablissement de l’équilibre sylvopastoral et à l’amélioration du cadre de vie des populations autour des villes et des agglomérations.
Le taux de reboisement moyen est passé, selon le Haut-Commissariat aux Eaux et aux Forêts, de 18.000 hectares par an en 2005 à 36.000 hectares par an en 2018. Dans le cadre de l’adaptation au changement climatique, le programme de reboisement est réorienté dans le sens suivant :

- La reconstitution et les réhabilitations des paysages par voie de reboisement dans le cadre d’une vision écosystémique.
- La promotion de la foresterie rurale.
- La création de ceintures vertes autour des centres urbains.

Ces orientations ont conduit aux résultats importants suivants :

- Renforcement de la cadence de la régénération des forêts naturelles pour atteindre une surface de l’ordre de 10.000 ha/an.
- Accélération du rythme des reboisements pour atteindre une surface de l’ordre de 40.000 ha/an à l’échelle nationale.
- Production de 215 millions de plants, qui exige la modernisation de 21 pépinières forestières existantes et la création de deux nouvelles.
- Amélioration des peuplements en croissance par des traitements sylvicoles dictés par les plans de gestion sur 100.000 hectares.
- Elaboration de plans d’aménagement et de gestion sur 750.000 hectares, augmentant ainsi le taux des forêts aménagées à 80%.

Le résultat important des programmes mis en œuvre, dans le cadre du PDT 2005-2014, se traduit par l’inflexion de la spirale de déforestation et de dégradation des sols.

Ainsi, entre 1990 et 2010, selon le Haut-Commissariat aux Eaux et aux Forêts, la surface des terres forestières a augmenté de 237.315 hectares, soit plus de 2,7%, alors que la surface forestière dégradée est passée de 25.000 ha/an à 11.200 ha/an, soit une diminution de l’ordre de 44%. Ceci étant grâce au grand effort soutenu de reboisement, de réhabilitation des écosystèmes, de régénération, d’aménagement des bassins versants et de promotion du développement des zones forestières et péri forestières.
1.4.5. Conservation et utilisation rationnelle des zones humides

Depuis la ratification de la Convention de Ramsar en 1980, "le Maroc s’est engagé dans la voie de l’élaboration des outils nécessaires à la mise en œuvre d’une politique de conservation et de développement durable de ses ressources naturelles. Dans cette politique, le département des forêts accorde aux zones humides une place privilégiée pour redonner de la visibilité à ces milieux trop souvent méconnus."

Dans le cadre du Programme Décennal Territorialisé 2005-2014, des résultats importants ont pu être atteints. Ils concernent les domaines suivants :

- La promulgation, en 2010, de la loi sur les aires protégées.
- La finalisation de l’inventaire national des zones humides du Maroc.
- L’inscription de 20 nouveaux sites sur la liste Ramsar portant ainsi à 24 le nombre total des zones humides inscrites.
- L’élaboration et l’actualisation des plans d’aménagement et de gestion de plusieurs zones humides prioritaires.
- L’élaboration d’une stratégie d’éducation et de sensibilisation du public.
- L’institutionnalisation d’un Comité National des Zones Humides.

"La Stratégie Nationale pour les Zones Humides 2015-2024, qui constitue un guide de planification et d’orientation, vient soutenir la concrétisation de la stratégie globale que le département des forêts déploie pour tous les écosystèmes forestiers. Cette stratégie est assortie d’un plan d’action et d’une vision intégrée écologique, économique et sociale à l’horizon 2024."

Le bilan des premières années de mise en œuvre du plan d’actions de cette importante stratégie nationale consolide les actions entreprises dans le cadre du Programme Décennal Territorialisé 2005-2014, citées ci-dessus et développe un nouveau système de gouvernance des zones humides, à travers :

- la signature d’une convention de partenariat entre le département des forêts et l’Alliance Marocaine pour le Climat et le Développement Durable (AMCDD),

95 Lhafi, 2015
96 RAMSAR, 2010. Gestion des eaux souterraines : Lignes directrices pour la gestion des eaux souterraines en vue de maintenir les caractéristiques écologiques des zones
97 Dakki, et al., 2015
98 https://ecologie.ma/les-zones-humides-du-maroc
• la signature d’un mémorandum cadre de partenariat entre le département des forêts et le Conservatoire du Littoral en France,

• l’organisation des sessions de formation au profit des gestionnaires des zones humides, en particulier sur les indicateurs de suivi de ces zones.

Dans le cadre de la mise en œuvre de cette stratégie, douze nouvelles zones ont été inscrites sur la liste "d’importance internationale" de la Convention Ramsar.

Ce classement est le fruit de la collaboration entre le département des forêts, le Fonds mondial pour la nature en Afrique du Nord (WW) et les experts de l’Institut scientifique de Rabat et de Grepom/Birdlife Maroc.

En conclusion, les programmes de conservation des sols et d’aménagement des bassins versants, de gestion et de valorisation des aires protégées, de reboisement et de reconstitution des écosystèmes forestiers et de conservation et utilisation rationnelle des zones humides ont des effets, économiques, environnementaux et sociaux très importants.

Ces effets sont en rapport direct avec la stabilisation et le maintien de la fertilité des sols, la conservation des eaux, la régulation des régimes hydriques ainsi que la création d’une activité qui génère des emplois et des revenus pour la population rurale riveraine des forêts.
2. Analyse des interactions et des cohérences entre les secteurs du "NEXUS"

2.1. Analyse des interactions du "NEXUS Eau-Energie-Agriculture-Ecosystèmes naturels"

2.1.1. Interactions du "NEXUS" face au changement climatique

Tous les écosystèmes sont infiniment connectés. Il n’est donc pas surprenant qu’il existe de fortes interdépendances entre les ressources fournies par la surface du sol. Le rapport spécial sur le changement climatique et les terres du Groupe d’experts intergouvernemental sur l’évolution du climat (août 2019). "Il reconnaît que l’eau, l’énergie, l’agriculture et les autres ressources terrestres forment un réseau complexe où l’utilisation et la disponibilité des ressources dépendent fortement les unes des autres".

De même, les forêts et les zones humides constituent de puissants puits de carbone. Les usages de l’eau à des fins énergétiques sont cependant menacés par le changement climatique, notamment la baisse de leurs débits moyens annuels et l’augmentation de leur température en saison chaude, notamment dans les pays du pourtour méditerranéen.

"La diminution du débit annuel des cours d’eau toucherait, avec un haut niveau de convergence des modèles (> à 90%) tout le pourtour méditerranéen dans une proportion d’au moins 25% et supérieure à 40% pour les pays du Maghreb et l’Est du bassin méditerranéen entre les périodes 1980-1999 et 2090-2099" 100. Cela affecte directement les apports d’eau aux retenues des barrages et donc le potentiel d’hydroélectricité.

Dans le même temps, la capacité de stockage des barrages est également réduite, en raison de l’envasement dû à la forte érosion des sols des bassins versants, estimée à 75 millions de m3/an.

“La production d’hydroélectricité au Maroc a été particulièrement altérée par le changement climatique. Ainsi, la production hydroélectrique marocaine actuelle est nettement inférieure à ce qui était escompté : entre 450 et 1500 GWh produits par an depuis une vingtaines d’années avec une moyenne annuelle de 1200 GWh, contre une production prévue de 2200 GWh”101.

L’Office National de l’Electricité et de l’Eau a alors dû compenser ce déficit par le recours à l’électricité d’origine thermique ou renouvelable. Cependant, il semble au final que le Maroc aurait des difficultés à préserver son niveau de production d’hydroélectricité actuel, même avec de nouvelles infrastructures programmées.

2.1.2. Interdépendances des secteurs de l’eau, de l’énergie, de l’agriculture et des écosystèmes naturels

Comprendre les liens existants entre l’eau, l’énergie, l’agriculture et les écosystèmes naturels peut offrir des possibilités d’accroître l’efficacité d’utilisation des ressources et d’améliorer la coopération et la cohérence des politiques entre ces secteurs.

La perspective du “NEXUS” devrait aider à promouvoir des actions interdisciplinaires et mutuellement bénéfiques ; cela peut contribuer à répondre aux besoins futurs de la population, en particulier celle qui n’a pas un accès généralisé à l’eau potable ni à l’énergie.

Dans cette perspective, l’identification d’interactions cruciales, de demandes contradictoires et de synergies potentielles dans les liens eau, énergie, agriculture et écosystèmes constitue un puissant point de départ pour parvenir à une adaptation durable.

L’intérêt de ce lien, au Maroc, est motivé par la pression croissante exercée sur les ressources naturelles. La demande en nourriture, en eau et en énergie augmente régulièrement, mais les ressources nécessaires pour les générer sont limitées et, dans de nombreux cas, en diminution.

• Interactions de l’Eau avec le Nexus "Energie, Agriculture et Ecosystèmes naturels"

Les interdépendances entre l’eau, l’énergie et l’agriculture sont nombreuses et multidimensionnelles. Bien que la discussion sur ce lien gagne du terrain, la manière dont le concept peut être appliqué pour assurer la sécurité d’approvisionnement en eau et en énergie, n’est pas encore clairement comprise.

Toutefois, la compréhension des différentes interfaces entre le "NEXUS eau et énergie" sera essentielle pour prendre les mesures adéquates qui sont souvent sur du long terme.

L’une des interfaces importantes dans ce lien est celle de l’eau avec l’énergie et l’agriculture. L’eau joue un rôle vital dans la production alimentaire et énergétique et dans la préservation des écosystèmes qui soutiennent l’agriculture et d’autres activités économiques essentielles à la sécurité alimentaire.

Une deuxième interface importante est celle de l’énergie avec l’agriculture et l’eau. L’énergie est nécessaire pour la production agricole, en particulier l’irrigation, et pour l’approvisionnement en eau, y compris l’extraction, le traitement, la distribution et l’épuration.

L’agriculture en tant que grande utilisatrice de terre, d’énergie et d’eau est la troisième interface de ce lien. En effet, la production alimentaire, est une grande utilisatrice d’eau, 85% au niveau national, selon le Plan National de l’Eau, d’énergie et de sol. Cette production affecte, également, le secteur de l’eau par la dégradation des sols, la modification du ruissellement et la surexploitation des nappes d’eau souterraines.

• Interactions de l’énergie avec le Nexus "Eau, Agriculture et Ecosystèmes naturels"

"L’énergie électrique est servie principalement pour le fonctionnement des stations de pompage et de refoulement d’eau potable, des procédés industriels et d’irrigation, des stations de dessalement et d’épuration (à boue activée). Globalement, le secteur de l’eau consommait en 2010 près de 1450 GWh. Cette consommation serait de 6150 GWhs en 2030 (de l’ordre de 0,7 à 0,8 kWh/m³), soit plus de quatre fois la consommation de 2010"102.

Les besoins en eau pour le secteur de l’énergie sont substantiels pour la production d’électricité, dans des centrales hydroélectriques, et en tant que fluide caloporteur pour le refroidissement dans les centrales thermiques classiques, en particulier pour celles situées à l’intérieur du pays.

La subvention du butane en bouteille, aux deux tiers de sa valeur, initialement pour un usage domestique, a eu d’importantes répercussions sur l’énergie utilisée pour l’irrigation. Les pompes diesel ont pour une grande part été modifiées avec facilité pour pouvoir fonctionner au butane. "Des milliers d’hectares sont alors irrigués grâce au pompage au gaz, à raison d’environ 100 bonbonnes par hectare et par an"103. Cette pratique rend artificiellement viable un pompage au-delà des 100 mètres de profondeur et fragilise les nappes aquifères.

Aussi, la consommation énergétique actuelle du secteur de l’eau dépasse la production hydroélectrique. "De plus, l’énergie utilisée pour la mobilisation et la production de l’eau représenterait près de 10% de la consommation énergétique nationale"104, si le recours aux eaux non conventionnelles se développe.

Du point de vue environnemental, l’impact environnemental des centrales solaires est loin d’être négligeable. Les sables mouvants à la rencontre de ces obstacles peuvent accélérer la désertification, tandis que les poussières réduisent l’absorption des rayons solaires. Les panneaux qui agissent comme des pièges à énergie solaire, augmentent les températures ambiantes et accentuent, par conséquent, le réchauffement climatique.

En effet, une centrale thermo-solaire est un gigantesque four solaire qui fonctionne en permanence toute l’année dans des régions désertiques. Cela exige une grande consommation annuelle d’eau, évaluée à 2,5 à 3 millions de m³ par an pour produire de l’énergie, entretenir les équipements, refroidir et nettoyer en permanence les miroirs/panneaux pour optimiser le captage des rayons solaires.

102 Source : consommation énergétique du secteur de l’eau au Maroc, Plan bleu, janvier 2011
103 Etude Amee, pompage solaire
104 Moulay El Bedraoui, Mohamed Berdai, 2011, op. cit.
Interactions des écosystèmes naturels avec le "Nexus Eau-Energie-Agriculture"

Selon le département des forêts, le bois de feu de forêt et des espaces boisés représente, au Maroc, plus de 18% du bilan énergétique national, notamment pour satisfaire les besoins de la population en milieu rural (plus de 85% des besoins). Les forêts marocaines ne produisent d’une manière durable que le tiers des besoins énergétiques nationaux, soit moins de 3 millions de tonnes de bois par an, pour une consommation totale dépassant 11 millions de tonnes.

Cette situation est l’une des principales causes de la dégradation des couverts végétaux, voire de la déforestation, dans les bassins versants avec des conséquences directes sur les réserves en eau superficielles, la fertilité des sols arables et l’envasement des barrages.

L’utilisation continue du bois comme source d’énergie conventionnelle dans le pays appelle à plus d’efforts en matière de recherche, d’innovation et d’adaptation technologique. D’une manière générale, les enjeux lourds des forêts et des zones humides dans le contexte du “NEXUS” sont en relation avec la gestion efficiente et durable des ressources en eau et en sol, la maîtrise de la demande énergétique, une production agricole durable en conformité avec les vocations des terres et soucieuse de l’environnement et de la maîtrise et l’adaptation au changement climatique. La figure 56, ci-après, schématiser ces principales interactions.

2.1.3. Compromis et Co-bénéfices

Toute recherche sur le "NEXUS" comporte deux dimensions complémentaires importantes. Il s’agit de comprendre et de quantifier les liens physiques existants entre les secteurs du "NEXUS", puis d’élucider le rôle des structures de gestion et de gouvernance impliquées, afin d’éclairer la prise de décision et les politiques à entreprendre.

La quantification du "NEXUS" et ses liens ont tendance à dominer la recherche universitaire sur le sujet. De nombreuses approches existent, y compris l’analyse du cycle de vie (ou analyse de la chaîne d’approvisionnement), les modèles de processus environnementaux, les modèles d’évaluation intégrée et d’autres types de modélisation informatique.

Toutefois, un compromis est à rechercher entre la complexité et l’exhaustivité d’une évaluation et sa facilité d’utilisation, ce qui a conduit à retenir que la flexibilité et l’adaptabilité dans tous les contextes et à toutes les échelles sont des caractéristiques essentielles des bons modèles du "NEXUS".
La compréhension des structures de gestion et de gouvernance, est essentielle pour déplacer le "NEXUS" au-delà de la recherche afin de le rendre pertinent et pratique pour la prise de décision. Cependant, ce domaine a reçu moins d’attention. En effet, "passer du concept théorique du NEXUS à son opérationnalisation sur le terrain s’est avéré difficile et, à ce jour, seules quelques études ont commencé à évaluer et à fournir des informations pratiques utiles sur les interactions nombreuses et complexes entre l’eau, l’énergie, l’alimentation et les écosystèmes"105.

Figure 56: Principales interactions mises en évidence entre les secteurs du "NEXUS Eau-Energie-Agriculture et Ecosystèmes naturels" du Maroc

L’expansion agricole nécessitera un accroissement de l’irrigation, tandis que le secteur de l’énergie prévoit de construire de nouveaux barrages pour la production de l’énergie hydroélectrique.

Ces objectifs reposent sur des ressources en eau abondantes et fiables, ainsi que sur une planification et une gestion coordonnée. Mais des compromis seront nécessaires entre le volume d’eau réservé à l’irrigation et celui utilisé pour la production de l’énergie hydro-électrique.

En outre, il existe d’autres besoins à prendre en compte, tels que l’impact des modifications des débits des rivières et de leurs fluctuations naturelles sur la faune, la pêche et le tourisme.

Il existe, également, des co-bénéfices potentiels. L’installation des barrages hydroélectriques de petite et moyenne taille en amont, par exemple, pourrait laisser plus d’eau pour satisfaire les besoins de l’agriculture. La mobilisation des ressources en eau non conventionnelles aussi bien par le dessalement de l’eau de mer que par l’épuration et la valorisation des eaux usées trouveront, dans le recours aux énergies renouvelables, les solutions appropriées aussi bien en termes de coûts du m3 d’eau dessalée ou traitée.

Ainsi, le bien-fondé de l’approche “NEXUS” consiste en “la recherche de nouveaux équilibres qui concilient le développement, la valorisation, la préservation et la protection des ressources naturelles et de l’environnement de façon générale” en vue d’assurer le tryptique “sécurité hydrique, alimentaire et énergétique” dans un cadre écosystémique sain. A cela s’ajoutent l’importance de la préservation de la biodiversité et des nombreux services qui en découlent, mais également la nécessité d’une adaptation aux changements climatiques et d’une atténuation de ses effets.

L’objectif “in fine” est d’évoluer vers un développement humain équilibré et durable dans le contexte d’un pays essentiellement aride, aux ressources hydriques et énergétiques limitées et avec des besoins croissants d’une population en continuelle augmentation.

2.2. Analyse des incohérences des secteurs : eau-énergie, agriculture et écosystèmes naturels pour la mise en œuvre du "NEXUS"

Le Maroc a cumulé le long des dernières décennies une expérience, des acquis et des leçons qui s’imposent à l’évidence, dans les domaines de la planification, de la valorisation et de la gestion et de la préservation des ressources naturelles.
Cependant, malgré tous ces importants résultats positifs, force est de constater que l’approche sectorielle était et demeure prépondérante dans la quasi-totalité des secteurs socio-économiques du Maroc, dont les domaines traités dans le cadre de la présente étude.

Les programmes, projets et actions, en particulier ceux du "NEXUS Eau, Energie, Agriculture, Ecosystèmes naturels", n’ont pas toujours obéi à la logique de cohérence de leurs politiques et d’intégration territoriale souhaitée et continuent de répondre à une approche linéaire, réduisant cette logique à une simple addition de plans sectoriels, consentant chacun à sa propre logique.

Les revues thématiques sectorielles, réalisées dans le cadre de la présente étude, ont permis d’apprécier les progrès importants accomplis par le Maroc durant les dernières décennies en matière de développement, de gestion et de préservation des ressources naturelles de façon générale. Ces revues ont permis, également, d’identifier les contraintes et les défis qui nécessitent d’être surmontés pour atteindre une intégration optimale des programmes et actions dans le cadre du "NEXUS" (Figure 57).

Les résultats et enseignements obtenus ont clairement établi, qu’en dépit des progrès réalisés et de la mise en place du cadre légal (Charte Nationale de l’Environnement et de Développement Durable) rehaussant le développement durable au niveau des priorités, d’importants enjeux et défis doivent être accomplis, pour la mise en œuvre effective du "NEXUS".

Les principales incohérences relevées concernent notamment :

i) la fragmentation des politiques des secteurs du "NEXUS Eau, Energie, Agriculture et Ecosystèmes naturels" et l’absence de mécanismes de coordination intersectoriels structurés et efficients,

ii) la difficulté de l’opérationnalisation sur le terrain du cadre législatif et réglementaire en vigueur,

iii) l’insuffisance d’une gouvernance intégrée et partenariale (planification, programmation, suivi-évaluation...),

iv) l’absence de l’approche "NEXUS" dans la dynamique de régionalisation et de déconcentration,

v) la faiblesse du système de formation, de recherche & développement, de l’innovation et de la sensibilisation,

vi) l’insuffisance de l’éducation à l’environnement et au développement durable dans le système scolaire et sur le terrain.

106 La Loi cadre n° 99-12 portant Charte nationale de l’environnement et du développement durable (Dahir n° 1-14-09 du 4 Joumada I 1435 (6 mars 2014)) fixe les objectifs, les principes, les droits et devoirs en matière de protection de l’environnement et de développement durable dans son Titre premier en cohérence avec la Constitution.
Un exemple illustratif d’analyse d’incohérences effectuée entre les secteurs du "NEXUS Eau, Energie, Agriculture et Ecosystèmes naturels", centré sur le secteur de l’eau, est schématisé dans la figure 57, ci-dessous.

Figure 57: Principales incohérences identifiées entre les secteurs du NEXUS : Eau-Energie-Agriculture et Ecosystèmes naturels du Maroc
2.2.1. Fragmentation des politiques de l’Eau, de l’Energie, de l’Agriculture et des Ecosystèmes naturels et absence de mécanismes de coordination intersectoriels efficaces

Cette situation est souvent prisonnière des visions sectorielles, conjuguée à la multiplicité des intervenants dans un même secteur, ce qui entraîne des différences d’approches dans la conception des solutions et une hétérogénéité dans leur mise en œuvre. Le grand nombre de partis politiques et de ministères qui ont constitué les différents gouvernements qui se sont succédé ont contribué à cette fragmentation des politiques et à leurs incohérences.

De même, la logique d’élaboration du budget de l’Etat est basée sur des approches sectorielles qui ne favorisent pas l’intégration et la complémentarité des projets et actions engagés par les différentes institutions publiques.

Le cas de décalage observé (pendant des décennies) entre les dates de réalisation des barrages, de l’aménagement et du développement rural des bassins versants, situés en amont, et de l’équipement hydro-agricole, situé en aval hydraulique des barrages, est très illustratif des incohérences observées entre les secteurs du "NEXUS".

Alors que ces incohérences existent toujours, plusieurs instances nationales ont été créées pour assurer une meilleure coordination et gouvernance des secteurs du "NEXUS Eau, Energie, Agriculture, Ecosystèmes naturels". Il y a lieu de citer, notamment :

• La "Commission interministérielle de l’eau" (CIE). Elle a été instaurée en 2001 et constitue un outil de fonctionnement plus souple que le CSEC. Cette instance, présidée par le Chef du gouvernement, permet de fixer les priorités, d’harmoniser les politiques et les programmes sectoriels et de veiller au suivi des programmes arrêtés. Il a fallu attendre la Circulaire du Chef du gouvernement de 2007, soit six années après la création de la CIE, pour que cette commission soit instituée. Sept années après, la commission a été institutionnalisée par décret en 2014 (Décret N°2.14.500) et s’est réunie très peu de fois depuis cette date ; les résultats de ses travaux sont très peu palpables sur le terrain.

2.2.2. Difficulté de l’opérationnalisation du cadre législatif et réglementaire en vigueur

Le Maroc a déployé de gros efforts, depuis plusieurs décennies, en matière d’études et de production d’outils juridiques et réglementaires, dans le domaine de la préservation, de la protection et de la valorisation des ressources naturelles.

Cependant, force est de constater que la traduction de ces efforts sur le terrain reste fort limitée ; les lois et les textes réglementaires sont en effet peu appliqués dans toute leur plénitude.

Les exemples suivants sont cités à titre indicatif et non exhaustif : absence d’études d’impacts de quelques grands projets (cas du projet touristique de l’oued Chbika par exemple), non application systématique des amendes et sanctions prévues par la loi sur l’Eau 36-15 pour les prélèvements illégaux d’eau superficielle et souterraine, non-respect des normes de rejets des effluents domestiques et industriels dans le milieu naturel, ...

Plusieurs lois souffrent, également, de l’absence de décrets d’application : cas de la loi sur les aires protégées, la nouvelle loi sur l’Eau 36-15, la loi sur le littoral n° 81-12, les mécanismes d’arbitrage et de régulation appropriés et adaptés au littoral. D’autres lois méritent d’être, également, revues et actualisées (cas du code forestier : absence, à ce jour, du cadre juridique propre aux écosystèmes vulnérables, tels que les zones humides).

La réglementation relative au développement des énergies renouvelables est, également, insuffisante (refonte de la loi 13-09 et opérationnalisation de l'Autorité Nationale de Régulation de l'Electricité) et très lente dans sa mise en œuvre : cas, par exemple, de l'ouverture des réseaux électriques aux autoréducteurs en application de la loi 58-15).

Une lenteur est, également, observée pour le volet de l'efficacité énergétique et pour l'ouverture de l'accès au réseau national de basse et de moyenne tension (textes réglementaires pour l'opérationnalisation de la loi 47-09 toujours attendus).

2.2.3. Insuffisance de gouvernance intégrée et partenariale : planification, programmation, suivi-évaluation...

Sur le plan de la gouvernance, la mise en œuvre des programmes de gestion durable des ressources naturelles et de protection de l'environnement, dans le cadre du "NEXUS Eau-Energie-Agriculture-Ecosystèmes Naturels", nécessite souvent la mobilisation et la contribution effective de plusieurs départements ministériels et institutions publiques et semi-publiques.

Une insuffisance de coordination active entre ces institutions a été relevée dans pratiquement chacune des quatre thématiques étudiées (absence d'instances effectives de coordination et quand elles existent, elles ne sont pas réellement opérationnelles, notamment le cas de la Commission interministérielle de l'eau).

De même, la planification et l'adoption des stratégies et des programmes de développement restent éminemment sectorielles sans une véritable concertation inter-départements pour assurer la cohérence de l’approche et la convergence des objectifs.

Il y a lieu de citer, à titre d'exemple, le manque d'études et de données sur l'évaluation économique des services écosystémiques dont l'intérêt pour les usagers est primordial, la gestion déléguée prévue par la loi sur les aires protégées n'est pas encore appliquée à ce jour, les dérogations de construction dans le littoral constituent une des causes principales de sa dégradation (voire de la disparition de milieux biologiques et écologiques importants), comme c'est le cas des zones humides au niveau du littoral (25 % de la surface totale des 24 zones humides majeures du Maroc a été perdue entre 1978 et 1999, selon l'Observatoire des Zones Humides Méditerranéennes).

Le suivi-évaluation de la dynamique des milieux naturels, des ressources naturelles et des programmes, est à la base de toute prise décision dans le cadre d'une politique de développement durable réussie. Malgré des investissements intellectuels, matériels et humains déployés et des progrès réalisés en matière de surveillance de l'environnement en général et des ressources naturelles en particulier, il n'en demeure pas moins vrai que l'utilisation des informations et données pertinentes dans la prise de décision est difficilement perceptible sur le terrain.
Les principales contraintes relevées sont en rapport, notamment avec l’absence de mécanismes de suivi-évaluation permanents des programmes mis en œuvre, le manque d’interaction entre les décideurs et les producteurs d’informations, la connaissance insuffisante des outils et produits existants en matière de suivi-évaluation et la faiblesse du potentiel scientifique et technique impliqué.

Les projets hydro-agricoles nécessitent plusieurs années pour être conduits à terme, notamment quand ils font face à des difficultés au niveau du foncier et du remembrement des terres. Les mécanismes actuels ne permettent pas toujours de sécuriser des financements pluriannuels nécessaires à une gestion optimale et réussie de ces importants projets agricoles. Ces projets sont, également, souvent dépendants des financements extérieurs et des conjonctures financières locales.

Dans le domaine de l’énergie, la maitrise des équilibres offre-demande découle en grande partie du degré de pertinence de deux leviers principaux : la gestion et la gouvernance. Les facteurs externes du marché ou de géopolitique sont en effet peu maîtrisables. L’art d’une bonne gouvernance est de savoir les analyser et de prévenir à temps pour éviter des situations très difficiles, comme les délestages par exemple.

2.2.4. Absence de l’approche “NEXUS” dans la dynamique de régionalisation et de déconcentration

La dynamique de la régionalisation- déconcentration est lente et sa mise en œuvre souffre de l’absence de promulgation de la charte de la déconcentration (décret n° 2-17-618) portant Charte Nationale de la Déconcentration Administrative et du Comité national de pilotage de la régionalisation avancée. Elle reste, également, tributaire du niveau des moyens humains et financiers mis en place, de la qualité de gouvernance et de la capacité de coordination entre les acteurs impliqués. La déclinaison des politiques sectorielles nationales au niveau régional nécessite la mise en œuvre d’un ensemble de dispositions opérationnelles nécessaires à la bonne marche du processus de régionalisation-déconcentration.

Dans ce cadre, les interfaces du "NEXUS" comprennent plusieurs acteurs publics, semi-publics et privés, ayant des perceptions et intérêts différents dans la gestion de l’espace et des ressources naturelles. Aussi, les approches territorialisées de l’action "NEXUS" sont particulièrement nécessaires pour garantir une gestion durable des espaces naturels et de leurs ressources naturelles.

Par ailleurs, le Maroc subit de plein fouet les conséquences néfastes des changements climatiques (climat, eau, agriculture, littoral…). Une révision de tout son dispositif de planification urbaine et territoriale est devenue une urgence.
2.2.5. Faiblesse du système de formation, de recherche & développement, de l’innovation et de la sensibilisation

Les institutions de formation, de planification, de mobilisation et de gestion, de préservation et de protection des ressources naturelles des secteurs du "NEXUS-Eau-Energie-Agriculture-Ecosystèmes" ont connu ces dernières années des départs massifs à la retraite, en raison des limites d’âge et de la mise en œuvre du programme de départ volontaire à la retraite de 2005, de leurs cadres et personnel de haut niveau technique et managérial. Ces fortes déperditions n’ont pas été compensées par de nouveaux recrutements, de niveau équivalent, pour répondre aux énormes besoins en compétences et en encadrement de haut niveau.

A titre indicatif, les budgets du département de l’Agriculture ont été multipliés par trois depuis le lancement du Plan Maroc Vert (PMV) en 2008\(^{107}\), alors que pendant cette même période, les ressources humaines chargées de la réalisation et du suivi des programmes de mise en valeur agricole ont connu des baisses variantes entre 30 % et 65%, selon les institutions (départs à la retraite).

Cet appauvrissement en capital humain a fortement impacté négativement l’efficience des institutions actuelles du "NEXUS". Il explique, en partie, les retards observés dans l’exécution des programmes et risque de réduire, à terme, la valorisation des investissements effectués dans les secteurs du "NEXUS", notamment celui de l’eau et de l’agriculture.

Par ailleurs, la qualité des formations dispensées ne répond pas suffisamment aux besoins évolutifs des secteurs de l’Eau, de l’Energie, de l’Agriculture et de la préservation des écosystèmes naturels. A titre d’exemple, la stratégie énergétique nationale de 2009 a prévu la création de plus de 60.000 emplois dans tous les corps des métiers de l’énergie renouvelable et d’efficacité énergétique (ER/EE).

Dans ce cadre, un certain nombre de filières (d’énergie renouvelable et d’efficacité énergétique) ont été ouvertes dans les écoles d’ingénieurs, les universités et les instituts de formation professionnelle.

Toutefois, le taux d’insertion des lauréats de ces filières dans le marché de l’emploi est très insignifiant. Cette incohérence appelle toutes les parties prenantes à revoir leurs approches de développement des énergies renouvelables et les voies pour l’accélération de la mise en œuvre de la stratégie nationale d’efficacité énergétique.

\(^{107}\) Département de l’agriculture et Ministère de l’économie et des Finances

145
L’expérience internationale montre l’importance de la formation et de la recherche scientifique dans tout développement socio-économique d’un pays. Ces expériences recommandent **qu’au moins 1% des budgets de chaque secteur soit dédié aux activités de recherche & développement.** Force est de constater que la situation dans les secteurs du “NEXUS Eau-Energie-Agriculture-Ecosystèmes” est assez critique à ce niveau.

Ces secteurs ne disposent pas de rubriques budgétaires dédiées au financement des projets de recherche, de recherche & développement et d’innovation dans leurs domaines respectifs. Les travaux de recherche menés dans les institutions universitaires, en liaison avec les domaines du "NEXUS", manquent d’infrastructures et de laboratoires suffisamment équipés et souffrent du soutien et de collaboration claire et structurée des institutions publiques, semi-publiques et privées.

La recherche scientifique dans les domaines du “NEXUS” souffre, également, du grand problème d’accès aux données des institutions relevant des départements concernés. Plusieurs travaux de recherche (thèses, mémoires divers de fin d’étude) sont de faible qualité scientifique ou n’aboutissent pas, en raison notamment des difficultés d’accès aux données nécessaires.

Certaines données sont mêmes payantes : cas des données climatiques de la Direction de la Météorologie Nationale. Le déplacement sur le terrain, pendant plusieurs jours ou semaines, des étudiants et chercheurs pour effectuer les mesures et observations nécessaires pour leurs travaux de recherche est souvent très difficile, parfois impossible, en raison de l’absence des moyens (dans leurs institutions respectives) de transport et de séjour nécessaires.

Les chercheurs travaillant dans les domaines du “NEXUS” ne sont pas sollicités non plus pour contribuer à la préparation des stratégies et plans nationaux et régionaux par les départements ministériels concernés, ce qui laisse l’université et, par conséquent, ses étudiants et ses chercheurs, loin et à l’écart des projets nationaux et régionaux structurants. Pour toutes ces raisons, les étudiants et chercheurs sont peu motivés pour travailler sur des projets de recherche en rapport avec les domaines du “NEXUS”.

146
2.2.6. Insuffisance de l’éducation à l’environnement et au développement durable (EEDD) dans le système scolaire et sur le terrain

Les principales insuffisances observées en matière d’éducation à l’environnement et au développement durable dans le système scolaire marocain et sur le terrain sont résumées ci-dessous :

- Insuffisance des contenus des manuels scolaires en informations relatives à la nécessité d’une utilisation responsable des ressources naturelles (notamment les ressources en eau), à leur rareté et à leur raréfaction, à leur vulnérabilité au changement climatique, à la pollution et à la surexploitation.

- Inadéquation des outils pédagogiques utilisés, qui sont souvent dépassés et ne comportent pas des techniques modernes de communication et de sensibilisation : jeux attractifs, vidéos, films pédagogiques, sorties pédagogiques sur le terrain ...

- Insuffisance d’intervention des ONG spécialisées dans le système éducatif (préscolaire et primaire), en raison de la faiblesse des moyens humains et des moyens disponibles.

- Insuffisance des débats citoyens sur les grands thèmes de l’environnement et du développement durable : climat, eau, biodiversité, pollution...

- Insuffisance d’actions d’information et de sensibilisation de la population aux sujets en rapport avec l’environnement et le développement durable.

- Insuffisance de soutien aux réseaux d’éducateurs et aux associations d’éducation à l’environnement et au développement durable.

- Insuffisance de l’implication des médias audio-visuels à l’éducation environnementale de la population : absence de chaînes de télévision et de radios spécialisées dans le domaine de l’environnement.

Les conséquences de cette insuffisance d’éducation à l’environnement et au développement durable chez les enfants sont observées quotidiennement et clairement dans les espaces environnementaux : les lacs naturels, les sources d’eau, les berges des rivières, les parcs naturels et aménagés, les forêts. Ces espaces sont souvent, malheureusement, pollués par d’innombrables détritus délaissés par les familles et par leurs enfants après chacun de leur passage....
L’insuffisance de la sensibilisation est malheureusement visible même chez quelques couches favorisées de la société, à travers notamment l’utilisation abusive de l’eau potable : arrosage (quasi quotidien) des pelouses de leurs jardins, le nettoyage quotidien à grands eaux de leurs maisons, le remplissage de leurs piscines, le lavage de leurs voitures, ... Ces citoyens sont même souvent convaincus, malheureusement, qu’ils ne sont pas concernés par le gaspillage de l’eau, du moment qu’ils paient leurs factures de consommation d’eau potable ou qu’ils puisent l’eau dans les puits ou forages (souvent non déclarés) de leurs maisons ou fermes agricoles.
Partie 4 : Orientations stratégiques et feuille de route pour la mise en place au Maroc du "NEXUS"
1. Orientations stratégiques

L’efficacité et l’efficience des actions dans le cadre du "NEXUS", tel qu’il ressort des enseignements tirés des revues thématiques et de l’analyse des contraintes, nécessitent la mise en œuvre d’une logique d’intervention innovante, basée sur une démarche de développement collectif et inclusif qui consacre la cohérence des politiques sectorielles.

Cette nouvelle démarche devrait permettre de maximiser l’efficacité de l’action nationale dans le sens de la recherche de nouveaux équilibres conciliant "développement et préservation de l’environnement " tel qu’il ressort des Orientations du Discours Royal de la Fête du Trône du 30 juillet 2012.

A ce titre, quatre orientations stratégiques et plusieurs mesures opérationnelles sont proposées (Figure 58). Ces orientations devraient permettre de contribuer à surmonter les incohérences identifiées entre les secteurs du "NEXUS" et d’améliorer l’efficience de leur gestion et la préservation des ressources naturelles, notamment les ressources en eau.

Les quatre Orientations Stratégiques sont présentées ci-dessous et leurs mesures opérationnelles font l’objet de la feuille de route recommandée (objet du chapitre 8 ci-après).

❖ Mise en place d’une politique intégrée des secteurs du "NEXUS Eau-Energie-Agriculture-Ecosystèmes"

• Assurer l’intégration des politiques publiques

L’analyse approfondie effectuée a montré les limites des politiques verticales sectorielles suivies, dites en "silos", et a préconisé que le Maroc devrait évoluer vers l’adoption de la nouvelle approche "NEXUS" pour assurer, avec une meilleure efficience, sa sécurité hydrique, alimentaire et énergétique et pour préserver ses ressources naturelles.

Cette nouvelle vision devrait renforcer et conforter le nouveau modèle de développement, en cours de construction. Dans ce cadre, les politiques publiques sectorielles et régionales en vigueur relatives aux secteurs du "NEXUS Eau-Energie-Agriculture-Ecosystèmes" devraient être impérativement mises en cohérence entre elles et avec les objectifs et les orientations de la Stratégie Nationale de l’Environnement et du Développement Durable (SNEDD).
En effet, au niveau mondial, le "NEXUS" est devenu le cadre conceptuel suivi pour la construction et la conduite de nouvelles politiques plurisectorielles et intégrées. Il permet de valoriser les synergies, de réduire les effets négatifs des externalités sectorielles, d’améliorer la gouvernance et la préservation des ressources naturelles.

Figure 58: Orientations stratégiques des secteurs du "NEXUS Eau-Energie-Agriculture-Ecosystèmes"

- **Refondre et adapter le cadre législatif et réglementaire des secteurs du "NEXUS"**

 A cours terme, il devient impératif d’accélérer la mise en œuvre des mesures permettant l’application des lois et textes réglementaires en vigueur (dans les secteurs du NEXUS) et de s’assurer de leur applicabilité réelle sur le terrain (décrets, arrêtés, ...). Il serait, aussi, urgent de mettre en place des outils pertinents et innovants de contrôle de l’application effective de ces lois et de leurs textes réglementaires.
A moyen terme et pour accompagner la nouvelle vision "NEXUS", la refonte et la modernisation du cadre législatif et réglementaire relatif aux secteurs du "NEXUS Eau-Energie-Agriculture-Ecosystèmes" s'imposerait.

L'importance capitale et préalable de cette étape pour la concrétisation et la réussite des actions du "NEXUS" nécessiterait la mise en place d'une véritable stratégie d'adaptation des textes législatifs et réglementaires relatifs aux secteurs du NEXUS, tout en veillant à la simplicité, à l'applicabilité et à la faisabilité de ces mesures.

De nouvelles instances responsables, réactives, dotées des moyens humains, logistiques et matériels ainsi que de pouvoirs suffisants, devraient être mises en place rapidement pour concevoir et piloter la préparation et l’application des lois multisectorielles devant favoriser et accélérer la mise en place du "NEXUS Eau-Energie-Agriculture-Ecosystèmes" et sa réussite sur le terrain.

- **Réduire le nombre important d’intervenants et des chevauchements des attributions dans les secteurs du "NEXUS Eau-Energie-Agriculture-Ecosystèmes"**

Dans le secteur de l’eau, à titre d’exemple, les intervenants suivants sont concernés :

- Plusieurs départements ministériels : Equipement-Transport-Logistique et Eau, Energie-Mines et Environnement, Agriculture-Pêches-Maritimes-Forêt et Eau, Intérieur, Industrie, Santé, Economie et Finances ;

- Plusieurs organismes semi-publics : Agences de Bassins Hydrauliques (10 au total), Office de l’Eau Potable et de l’Electricité, Offices Régionaux de Mise en Valeur Agricoles (9 au total), Agences en charge de l’énergie ;

- Plusieurs Régies Autonomes de Distribution de l’Eau et de l’Electricité ;

- Des concessionnaires privés de production et de distribution d’eau et d’électricité.

Cette multitude d’intervenants complique la coordination entre ces différentes institutions et constitue une contrainte majeure à la mise en œuvre d’une planification, une gestion, une préservation et une protection optimales des ressources en eau.
Mise en place d’une gouvernance efficiente des secteurs du "NEXUS Eau-Energie-Agriculture-Ecosystèmes"

Intégrer et mettre en cohérence les politiques de planification et d’aménagement d’ouvrages et d’infrastructures divers

Cette intégration devrait se faire dans une logique concertée d’aménagement du territoire et d’affectation des sols : barrages, recharge artificielle des nappes surexploitées, aménagement de bassins versants, équipement des périmètres irrigués, aménagement des ouvrages de protection contre les inondations, collecte des eaux pluviales, centrales hydro-électriques, stations de traitement d’eau potable, de dessalement de l’eau de mer, de déminéralisation des eaux saumâtres, d’épuration des eaux usées...

Adopter une approche participative

L’adoption d’une approche participative citoyenne conférerait aux politiques publiques sectorielles du "NEXUS Eau-Energie-Agriculture-Ecosystèmes" un haut degré d’adhésion et de légitimité populaire pour leur élaboration et leur mise en œuvre. Cette implication assurerait, également, un enrichissement des stratégies et des plans d’action, favoriserait l’adhésion partagée et garantirait, par conséquent, un plus grand succès à leur mise en œuvre.

Inscrire les territoires dans la dynamique du "NEXUS"

En conformité avec le choix stratégique de la régionalisation avancée pour une territorialisation des politiques publiques et pour une meilleure convergence et ciblage des actions du "NEXUS", le Maroc a élaboré ses stratégies sectorielles et ses engagements à l’international en respect des conventions signées et ratifiées au fil des années ("Conventions Cadre des Nations unies sur le Changement Climatique", "Biodiversité et Lutte Contre la Désertification" et les Protocoles et Processus qui les ont suivis....).

Par ailleurs, plusieurs plans nationaux ont déjà engagé le pays sur une politique de lutte contre le changement climatique et de préservation des ressources naturelles. Il devient urgent de territorialiser ces actions, selon des approches participatives, partenariales et pérennes.

Les approches territorialisées des actions du "NEXUS" seraient particulièrement nécessaires pour garantir une vision cohérente entre l’échelon national et régional, un développement local harmonieux et une gestion durable et concertée des ressources naturelles.

Accélérer la transition vers une économie verte

La transition vers une économie verte nécessiterait l’intégration de la dimension "NEXUS" dans l’ensemble des secteurs socio-économiques clés et le développement d’une nouvelle industrie citoyenne et protectrice des ressources naturelles. Cette industrie devrait se baser sur le développement et l’utilisation massifs des énergies renouvelables et sur la préservation maximale des ressources naturelles, particulièrement les ressources en eau, qui sont rares et en forte raréfaction au Maroc.

La mobilisation des financements verts, publics et privés, destinés à l’encouragement de l’économie verte, le renforcement des centres de recherche, universités et instituts existants, ainsi que la création de nouveaux centres nationaux d’expertise, de recherche et d’innovation dans les nouveaux métiers verts constitueraient la principale clé de succès de la transition verte.

Atteindre cette nouvelle vision et réussir cette ambition nécessiteraient un engagement très clair et très fort de l’État, des collectivités locales et du secteur privé, ainsi que la mise en place des moyens nécessaires à tous les niveaux (réglementaires, humains, matériel...).

Mettre en place un système de suivi évaluation

Le suivi-évaluation des différents programmes, projets et actions et de leurs impacts environnementaux et socioéconomiques devrait constituer une composante essentielle de toute panification. Ce suivi se ferait sur la base de critères et d’indicateurs précis et appropriés, permettant d’apprécier facilement et de mesurer objectivement les insuffisances et les progrès réalisés sur la voie de la viabilité écologique et socioéconomique et de la mise en œuvre des politiques des secteurs du "NEXUS Eau-Energie-Agriculture-Ecosystèmes".
Renforcement des moyens du développement de la formation, de la recherche, de la Recherche & Développement, de l’expertise et de l’innovation dans les secteurs du "NEXUS"

Consolider et renforcer les moyens de mise en œuvre des programmes, projets et actions du "NEXUS"

Pour lever les défis stratégiques du "NEXUS", la mobilisation des ressources financières et le renforcement des capacités des institutions chargées de la mise en place du nouveau cadre de développement seraient indispensables.

Les secteurs public et semi-public devraient établir une orientation claire et forte de renforcement des capacités de ses institutions et favoriser également les actions du secteur privé dans ce cadre. Les procédures et les structures d’incitation devraient, ainsi, être revues en profondeur et modernisées de manière à encourager rapidement et de façon substantielle l’investissement productif, respectueux de l’environnement et préservant ses ressources naturelles.

Aussi, le renforcement des capacités, de la formation scientifique et technique, de tous les niveaux des cycles académiques, dans les établissements scolaires publics et privés, s’imposerait, notamment, dans les domaines de l’eau, de l’environnement, des énergies renouvelables, de l’efficacité-énergétique, des écosystèmes naturels, de la biodiversité et du changement climatique.

Développer la recherche & développement, l’innovation et la sensibilisation

L’encouragement et le développement de la recherche et de l’innovation, ainsi que la sensibilisation des citoyens, constitueraient un élément clé pour la réussite de la transition vers le "NEXUS". Il s’agirait de capitaliser sur les résultats de la recherche et de l’innovation pour appuyer, renforcer, innover et accélérer le développement et l’intégration des secteurs du "NEXUS".

Les financements alloués à la recherche scientifique et technique sont faibles et sont essentiellement d’origine publique. Ces financements ne dépassent guère 0,8% du PIB, contre 2,26 % en France et 3,4% au Japon, selon l’Institut de Statistiques de l’UNESCO.
La création et le renforcement des institutions de formation, de recherche & développement et d’expertise de très haut niveau et regroupant les meilleures compétences scientifiques nationales, dans les domaines du "NEXUS", seraient impératifs et urgents pour réussir l’implémentation rapide du "NEXUS". Ces institutions seraient, en effet, les seules en mesure de former des cadres de haut niveau et de fournir les secteurs public, semi-public et privé d’outils innovants et performants et des cadres de très haut niveau.

- **Renforcement de la communication et de la sensibilisation sur la vulnérabilité des ressources naturelles au changement climatique et à la surexplotation**

- **Mobiliser les parties prenantes et les acteurs concernés**

 Les grandes insuffisances mises en évidence dans l’éducation à l’environnement et le développement durable dans le système scolaire national imposeraient une mobilisation générale, rapide et forte de toutes les parties prenantes : Département chargé de l’Education Nationale, les collectivités locales, le secteur privé, la société civile, les médias.... L’éducation à l’environnement et au développement durable devrait être érigée en action d’utilité sociale prioritaire.

 Cette mobilisation permettrait de rattraper ce retard inquiétant (et visible sur le terrain et quotidiennement dans toutes les régions du Royaume) et de préparer une génération de citoyens plus éduqués, mieux formés et plus sensibilisés à la nécessité du respect de l’environnement (avec toutes ses composantes) et à la préservation de ses ressources naturelles, notamment les ressources en eau.

- **Promouvoir l’enrichissement des programmes et manuels**

 Il serait judicieux d’enrichir les programmes et manuels préscolaires et scolaires (primaire) avec un contenu pédagogique clair, facile et attractif, portant notamment sur les ressources naturelles (eau, forêt, biodiversité, énergies renouvelables, efficacité énergétique ...), sur la nécessité de les préserver et de les valoriser (pour le bien-être de la population et de l’équilibre écologique des écosystèmes naturels), sur la grande vulnérabilité de ces ressources au changement climatique et à leur surexploitation par l’Homme.

 Des activités pratiques et des sorties sur le terrain seraient, à cet effet, nécessaires pour avoir une meilleure appréciation par les élèves de la vulnérabilité des ressources naturelles aux différentes contraintes naturelles et anthropiques et des conséquences de leur dégradation et surexploitation.

- **Renforcer la sensibilisation de toutes les couches de la société à l’éducation environnementale et au développement durable**
Les moyens accordés aux programmes de sensibilisation du public à la gestion durable des ressources naturelles devraient être sensiblement augmentés. En effet, c’est à travers des programmes et actions continus, pertinents et ciblés de sensibilisation (organisés au niveau de l’ensemble du territoire national) que le Maroc pourrait développer une prise de conscience collective à la nécessité de la protection de l’environnement et la préservation de ses ressources naturelles.

Ce renforcement pourrait se faire à travers des campagnes continues et ciblées de communication et de sensibilisation par les médias audio-visuels et à travers des actions pratiques à mener dans les écoles et sur le terrain (quartiers, notamment ceux les plus défavorisés) par des associations spécialisées dans le domaine de la protection de l’environnement. Ces associations nécessiteraient, également, d’être encadrées et encouragées par les services concernés de l’Etat et des collectivités locales.

Le développement de centres de formation et de sensibilisation à la protection de l’environnement serait, également, important et nécessaire. Les Centres de Salé de la Fondation Mohamed VI pour la Protection de l’Environnement et celui de Sidi Boughaba à Mehdia sont des centres réussis et pourraient servir d’exemples à suivre par les autres régions du Royaume.

2. Feuille de route des mesures opérationnelles pour l’implémentation des orientations stratégiques

Les quatre orientations stratégiques proposées sont déclinées sous forme d’une feuille de route, constituée de 33 mesures opérationnelles.

❖ Mettre en place une politique intégrée des secteurs du NEXUS Eau-Energie Agriculture-Ecosystèmes

Une série de mesures opérationnelles sont listées dans le tableau 12 ci-dessous. Celles-ci pourraient valoriser les synergies des secteurs concernés, réduire les incohérences sectorielles identifiées, optimiser la gestion et améliorer la préservation et la protection des ressources naturelles, notamment les ressources en eau et ce, dans une perspective d’équité sociale et de développement durable.
Le tableau 12 met, également, en évidence, les parties prenantes des mesures opérationnelles proposées.

Tableau 12: Mesures opérationnelles de l'orientation stratégiques : Mettre en place une politique intégrée des secteurs du NEXUS-EEAES

<table>
<thead>
<tr>
<th>Mesures opérationnelles</th>
<th>Parties prenantes</th>
</tr>
</thead>
</table>
| ➢ Promouvoir unepolitique multisectorielle de planification et de gestion durable des ressources naturelles du "NEXUS Eau-Energie-Agriculture-Ecosystèmes". | - Conseil Supérieur de l'Eau et du Climat
- Commission Interministérielle de l'Eau
- Départements en charge des secteurs du "NEXUS" |
| ➢ Réduire le nombre important d'intervenants et des chevauchements des attributions dans les secteurs du "NEXUS Eau-Energie-Agriculture-Ecosystèmes". | - Services du Chef du gouvernement |
| ➢ Œuvrer pour l'harmonisation des horizons de planification et des stratégies des secteurs du "NEXUS Eau-Energie-Agriculture-Ecosystèmes". | - Services du Chef du gouvernement |
| ➢ Rendre obligatoire et périodique les réunions du Conseil Supérieur de l'Eau et du Climat (CSEC) et de la Commission Interministérielle de l'Eau (CIE), avec une fréquence annuelle (au moins) pour le CSEC et trimestrielle pour la CIE. | - Législateur (Deux chambres du parlement) |
| ➢ Mettre en cohérence le cadre législatif et réglementaire actuel des secteurs du "NEXUS Eau-Energie-Agriculture-Ecosystèmes" avec une gestion intégrée de ces secteurs dans le cadre du "NEXUS Eau-Energie-Agriculture-Ecosystèmes". | - Départements en charge des secteurs du "NEXUS"
- Ministère des Finances
- Législateur |
| ➢ Eriger "le Bassin Versant Hydraulique" comme l’unité spatiale de base pour les études, la planification, l’aménagement, la gestion, la préservation, la protection, le suivi et l’évaluation des ressources naturelles des secteurs du "NEXUS Eau-Energie-Agriculture-Ecosystèmes". | - Législateur |
| ➢ Œuvrer pour une optimisation maximale des dates de réalisation des projets de construction des ouvrages hydrauliques (notamment les barrages et les périmètres irrigués), d’aménagement et de développement bassins versants situés en amont hydraulique de ces ouvrages hydrauliques. | - Commission Interministérielle de l’Eau
- Départements en charge des domaines du "NEXUS"
- Comité des bassins hydrauliques
- Agences de Bassins Hydrauliques |
| ➢ Traduire l’implémentation de la convergence des politiques publiques des secteurs du "NEXUS Eau-Energie-Agriculture-Ecosystèmes" par la mise en place systématique de contrats-programmes. | - Commission Interministérielle de l’Eau
- Départements en charge des secteurs du "NEXUS"
- Ministère des Finances |
Mettre en place une gouvernance efficiente des secteurs du NEXUS-EEAES

Cette orientation stratégique vise à ancrer la régionalisation avancée (pour une territorialisation des politiques publiques) et asseoir une meilleure convergence et ciblage des programmes et projets régionaux du "NEXUS Eau-Energie-Agriculture-Ecosystèmes".

Les approches territorialisées des actions du "NEXUS Eau-Energie-Agriculture-Ecosystèmes" constituerait, ainsi, une extrême urgence pour garantir une gestion durable et concertée des espaces naturels et de leurs ressources naturelles.

La transition vers une économie verte, comme vecteur de développement durable du "NEXUS Eau-Energie-Agriculture-Ecosystèmes", passerait par l'intégration de la dimension "NEXUS" dans l'ensemble des secteurs socio-économiques clés du Maroc et par le développement d'un nouveau modèle de développement, qui privilégierait l'utilisation des énergies renouvelables et l'efficacité énergétique dans ses processus de production.

Cette orientation stratégique nécessiterait un engagement clair et fort de l'Etat, des collectivités locales et du secteur privé et ce, en vue de parvenir à un développement socio-économique durable et équitable à moyen terme. Ses principales mesures opérationnelles sont indiquées dans le tableau 13 ci-dessous.

Tableau 13: Mesures opérationnelles de l'orientation stratégique : Mettre en place une gouvernance efficiente des secteurs du "NEXUS Eau-Energie-Agriculture-Ecosystèmes"

<table>
<thead>
<tr>
<th>Mesures opérationnelles</th>
<th>Parties prenantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>❖ Institutionnaliser la coordination intersectorielle, ses règles de gouvernance et son mode de fonctionnement aussi bien au niveau national que territorial.</td>
<td>- Services du Chef du gouvernement</td>
</tr>
<tr>
<td>❖ Réduire au maximum le nombre d'intervenants dans le secteur de l’eau (planification, gestion, mobilisation, protection, irrigation, assainissement), en les regroupant dans un seul grand département ministériel et ce pour assurer une meilleure convergence des politiques publiques et pour mutualiser les moyens humains et matériels</td>
<td>- Services du Chef du gouvernement</td>
</tr>
<tr>
<td>❖ Séparer la mission de planification, de gestion et de protection des ressources naturelles du "NEXUS" (départements ministériels) de la fonction d’aménagement, de suivi et de</td>
<td>- Législateur</td>
</tr>
</tbody>
</table>
maintenance des ouvrages divers (hydrauliques, assainissement, irrigation, hydro-électricité, aménagement des bassins versants...). Cette dernière mission devrait être attribuée à une entité nationale indépendante et autonome (office, agence ...) à mettre en place.

| Décliner les politiques sectorielles nationales du "NEXUS Eau-Energie-Agriculture-Ecosystèmes" au niveau régional (bassins versants hydrauliques), moyennant un ensemble de dispositions organisationnelles et opérationnelles complémentaires. | - Départements en charge des secteurs du "NEXUS"
- Comité des bassins hydrauliques
- Agences de Bassins Hydrauliques
- Régions |
|---|---|
| Accélérer la mise en place et l’opérationnalisation des Comités des Bassins Hydrauliques et promouvoir la constitution, au sein de ces organes, de comités "NEXUS Eau, Energie, Agriculture, Forêt et Zones humides". | - Départements en charge des secteurs du NEXUS
- Agences de Bassins Hydrauliques |
| Veiller à la mise en œuvre de Plans de Développement Régionaux et de Plans d’Actions Communaux (PACs) intégrés, afin de permettre une déclinaison territoriale des stratégies et politiques sectorielles du "NEXUS Eau-Energie-Agriculture-Ecosystèmes" et d’anticiper les risques climatiques spécifiques à chaque écosystème. | - Départements en charge des secteurs du NEXUS
- Comité des Bassins Hydrauliques
- Agences de Bassins Hydrauliques
- Régions |
| Généraliser (à chaque fois que cela est possible) le développement et l’utilisation des ressources en eau non conventionnelles : dessalement de l’eau de mer, déminéralisation des eaux saumâtres, réutilisation des eaux usées épurées (pour l’arrosage des espaces verts, l’irrigation des espèces agricoles adaptées, nettoyement des chaussées...), collecte des eaux pluviales, | - Services du Chef du gouvernement
- Départements en charge des secteurs du NEXUS
- Comité des Bassins Hydrauliques
- Agences de Bassins Hydrauliques
- Régions |
| Eriger rapidement et définitivement les nappes d’eau souterraines en réservoirs stratégiques et généraliser la recharge artificielle et les contrats des nappes (notamment celles qui sont surexploitées). | - Services du Chef du gouvernement
- Départements en charge des secteurs du NEXUS
- Comité des bassins hydrauliques |
| Renforcer les moyens humains et matériels de la Police de l’eau et de l’environnement et exiger des usagers l’installation immédiate et généralisée des compteurs sur tous leurs captages d’eau superficielle et souterraine (puits et forages) | Agences de Bassins Hydrauliques
- Régions | Législateur |
| Ouvrir l’accès du privé aux réseaux électriques nationaux de basse et de moyenne tension pour la mise en place de projets de développement d’énergie renouvelable et d’efficacité énergétique, compte tenu de leur potentiel en économie verte (toits solaires photovoltaïques, pompes solaires...) | Législateur
- Département de l’Energie
- Département de l’Intérieur
- ONEE | |
| Mettre en place un système de suivi-évaluation performant, permettant d’apprécier facilement et de mesurer objectivement les insuffisances et les progrès réalisés sur la voie de la viabilité écologique et socioéconomique et dans la mise en œuvre des politiques des secteurs du "NEXUS Eau-Energie-Agriculture-Ecosystèmes". | Régions
- Opérateurs
- Départements en charge des secteurs du "NEXUS" | |

- **Renforcement des moyens du développement de la formation, de la recherche, de la Recherche & Développement, de l’expertise et de l’innovation dans les secteurs du "NEXUS"**

Cette orientation stratégique devrait relever les défis liés au renforcement des capacités humaines et institutionnelles, à la mobilisation des ressources financières, à l’innovation et au transfert de technologie.

La déclinaison opérationnelle de cette orientation est décrite dans le tableau 14, ci-dessous. Elle place le citoyen au centre de la mise en œuvre des programmes, projets et actions du "NEXUS Eau-Energie-Agriculture-Ecosystèmes".

L’éducation à l’environnement et au développement durable, insuffisante au Maroc, devrait être renforcée de façon substantielle au niveau de tout le système scolaire.
Tableau 14: Mesures opérationnelles de l’orientation stratégique : Renforcement des moyens du développement de la Formation, de la recherche, de la recherche & développement, de l’expertise et de l’innovation dans les secteurs du "NEXUS"

<table>
<thead>
<tr>
<th>Mesures opérationnelles</th>
<th>Parties prenantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Renforcer la formation scientifique et technique (dans tous les niveaux des cycles académiques) dans les établissements scolaires publics et privés, notamment dans les domaines du "NEXUS Eau-Energie-Agriculture-Ecosystèmes".</td>
<td>- Département en charge de l’Education</td>
</tr>
<tr>
<td>- Compenser les baisses importantes des effectifs des ressources humaines enregistrées ces dernières années (en raison du départ massif à la retraite) par un plan urgent de recrutement massif de cadres spécialisés et compétents.</td>
<td>- Services du Chef du gouvernement - Ministère des Finances - Départements en charge des secteurs du "NEXUS"</td>
</tr>
<tr>
<td>- Développer la formation universitaire (licences, masters, masters spécialisés, filières d’ingénieur et doctorat) dans les différentes facultés et écoles d’ingénieurs du Royaume, ainsi que la formation professionnelle dans les domaines du "NEXUS".</td>
<td>- Services du Chef du gouvernement - Département en charge de l’Enseignement Supérieur - Départements de tutelle des établissements de formation des cadres</td>
</tr>
<tr>
<td>- Instaurer des programmes continus de renforcement des capacités (aspects technique, managérial, communication…) à toutes les échelles (responsables, cadres, techniciens, …) des institutions publiques et semi-publiques du NEXUS.</td>
<td>- Départements en charge des secteurs du "NEXUS" - Etablissements sous tutelle</td>
</tr>
<tr>
<td>- Développer, structurer et pérenniser la collaboration scientifique et technique (dans les domaines du NEXUS) entre les établissements universitaires et les institutions publiques et semi-publiques du "NEXUS Eau-Energie-Agriculture-Ecosystèmes".</td>
<td>- Institutions de recherches - Universités et Ecoles d’ingénieurs - Départements en charge des secteurs du "NEXUS"</td>
</tr>
<tr>
<td>- Consacrer 1% au moins du budget annuel de chaque secteur pour le financement d’actions et projets de recherche & développement et d’innovation dans les domaines du "NEXUS Eau-Energie-Agriculture-Ecosystèmes".</td>
<td>- Services du Chef du gouvernement - Départements en charge des secteurs du "NEXUS" - Département en charge de l’Enseignement Supérieur - Législateur</td>
</tr>
<tr>
<td>- Mettre en place un Centre National de Recherche et d’Innovation sur l’Eau et les Changements Climatiques afin de fédérer les compétences nationales et de mutualiser les moyens humains et matériels.</td>
<td>- Législateur - Départements en charge des secteurs du" NEXUS" - Ministère des Finances</td>
</tr>
<tr>
<td>- Encourager le secteur bancaire à investir et à encourager le développement de projets et actions dans les secteurs du "NEXUS Eau-Energie-Agriculture-Ecosystèmes".</td>
<td>- Secteur bancaire - Ministère des Finances</td>
</tr>
</tbody>
</table>

163
Renforcement de la communication et de la sensibilisation sur la vulnérabilité des ressources naturelles au changement climatique et à la surexploitation

Le renforcement de la communication permettrait de préparer une génération de citoyens plus éduqués, mieux formés et plus sensibilisés à la nécessité du respect de l'environnement (avec toutes ses composantes) et à la préservation de ses ressources naturelles.

La sensibilisation des citoyens constituerait un élément clé pour la réussite de la transition vers le "NEXUS" par la production des connaissances, du savoir et de l’élévation de la conscience, nécessaires à l'appui des politiques publiques.

Les médias écrits et audio-visuels devraient, aussi, s’investir de façon intensive dans la sensibilisation du citoyen, en général, et des enfants, en particulier -qui sont les acteurs de demain dans leurs familles respectives et dans la société - sur la nécessité de respecter et de protéger l’environnement et de préserver les ressources naturelles.

Le tableau 15, ci-dessous, présente quelques mesures opérationnelles permettant d’atteindre les objectifs de cette orientation stratégique, au moins en partie.
Tableau 15: Mesures opérationnelles de l’orientation stratégique : Renforcement de la communication et de la sensibilisation sur la vulnérabilité des ressources naturelles au changement climatique et à la surexploitation

<table>
<thead>
<tr>
<th>Mesures opérationnelles</th>
<th>Parties prenantes</th>
</tr>
</thead>
</table>
| ❖ Promouvoir la sensibilisation des citoyens à la nécessité de préserver et de protéger les ressources naturelles en général et les ressources en eau en particulier. | - Départements en charge des secteurs du" NEXUS"
- Agences de Bassins Hydrauliques
- Département en charge de la communication
- Presse & médias divers
- ONG |
| ➢ Permettre le développement des actions d’information et de sensibilisation auprès de la population en soutenant les événements organisés par l’école et/ou par les associations, l’édition associative, la diffusion de documents et d’outils pédagogiques. | - Départements en charge des secteurs du “NEXUS”
- Département de l’Education Nationale
- ONG |
| ➢ Intégrer dans le projet éducatif des actions d’éducation à l’environnement et au développement durable auprès des jeunes avec une adaptation aux spécificités des régions. | - Départements en charge des secteurs du “NEXUS”
- Département de l’Education Nationale
- Régions |
| ➢ Favoriser l’accès à la connaissance de la biodiversité régionale pour toutes les catégories sociales par des actions éducatives construites en partenariat avec le tissu socioéducatif régional. | - Départements en charge des secteurs du "NEXUS"
- Département de l’Education Nationale
- Régions
- ONG |
| ➢ Promouvoir et soutenir des débats citoyens sur tous les grands thèmes de l’environnement : climat, biodiversité, eau, changement climatique, pollutions… | - Départements en charge des secteurs du "NEXUS"
- Département de l’Education Nationale
- ONG |
| ➢ Associer les représentants des acteurs de l’éducation à l’environnement et au développement durable dans les constructions des politiques publiques pour y définir ensemble un volet éducatif. | - Départements en charge des secteurs du “NEXUS”
- Département de l’Education Nationale
- ONG |
Références bibliographiques

166

29. CESE., 2014. La gouvernance par la gestion intégrée des ressources en eau au Maroc : Levier fondamental de développement durable.

64. IRES., 2011. Rapport stratégique de synthèse : Le Maroc face au changement climatique, Incidences sur la trajectoire de développement et perspectives d'adaptation. IRES, Rabat

76. MEMEE., 2012. Projet de Plan National de l’Eau

77. MEMEEP/SEE., 2009a. Programme National d’Economie d’Eau en Irrigation PNEEI

79. MEETL/SEEE., 2018. Assistance technique pour le suivi, la mise en place et la mise en œuvre des contrats de nappes au niveau national, au profit de la Direction de la Recherche et de la Planification de l’Eau.

133. UNFCCC., 2016. Morocco First NDC https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Morocco First/Morocco First NDC.pdf.